Somdev Sangwan b0d56aa249
prototype
2023-06-18 04:25:02 +05:30

58 lines
1.8 KiB
Python

from typing import List, Union, Dict, Set, Tuple
from diffusers.pipelines.stable_diffusion.safety_checker import (
StableDiffusionSafetyChecker,
)
from transformers import AutoFeatureExtractor
import torch
from PIL import Image, ImageFilter
import numpy as np
safety_model_id: str = "CompVis/stable-diffusion-safety-checker"
safety_feature_extractor: AutoFeatureExtractor = None
safety_checker: StableDiffusionSafetyChecker = None
def numpy_to_pil(images: np.ndarray) -> List[Image.Image]:
if images.ndim == 3:
images = images[None, ...]
images = (images * 255).round().astype("uint8")
pil_images = [Image.fromarray(image) for image in images]
return pil_images
def check_image(x_image: np.ndarray) -> Tuple[np.ndarray, List[bool]]:
global safety_feature_extractor, safety_checker
if safety_feature_extractor is None:
safety_feature_extractor = AutoFeatureExtractor.from_pretrained(safety_model_id)
safety_checker = StableDiffusionSafetyChecker.from_pretrained(safety_model_id)
safety_checker_input = safety_feature_extractor(
images=numpy_to_pil(x_image), return_tensors="pt"
)
x_checked_image, hs = safety_checker(
images=x_image, clip_input=safety_checker_input.pixel_values
)
return x_checked_image, hs
def check_batch(x: torch.Tensor) -> torch.Tensor:
x_samples_ddim_numpy = x.cpu().permute(0, 2, 3, 1).numpy()
x_checked_image, _ = check_image(x_samples_ddim_numpy)
x = torch.from_numpy(x_checked_image).permute(0, 3, 1, 2)
return x
def convert_to_sd(img: Image) -> Image:
_, hs = check_image(np.array(img))
if any(hs):
img = (
img.resize((int(img.width * 0.1), int(img.height * 0.1)))
.resize(img.size, Image.BOX)
.filter(ImageFilter.BLUR)
)
return img