prototype

This commit is contained in:
Somdev Sangwan 2023-06-18 04:25:02 +05:30 committed by GitHub
parent a0239a59d7
commit b0d56aa249
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
10 changed files with 563 additions and 0 deletions

43
README.md Normal file
View File

@ -0,0 +1,43 @@
# roop for StableDiffusion
This is an extension for StableDiffusion's [AUTOMATIC1111 web-ui](https://github.com/AUTOMATIC1111/stable-diffusion-webui/) that allows face-replacement in images. It is based on [roop](https://github.com/s0md3v/roop) but will be developed seperately.
![example](example/example.png)
### Disclaimer
This software is meant to be a productive contribution to the rapidly growing AI-generated media industry. It will help artists with tasks such as animating a custom character or using the character as a model for clothing etc.
The developers of this software are aware of its possible unethical applicaitons and are committed to take preventative measures against them. It has a built-in check which prevents the program from working on inappropriate media including but not limited to nudity, graphic content, sensitive material such as war footage etc. We will continue to develop this project in the positive direction while adhering to law and ethics. This project may be shut down or include watermarks on the output if requested by law.
Users of this software are expected to use this software responsibly while abiding the local law. If face of a real person is being used, users are suggested to get consent from the concerned person and clearly mention that it is a deepfake when posting content online. Developers of this software will not be responsible for actions of end-users.
## Installation
To install the extension, follow these steps:
+ In web-ui, go to the "Extensions" tab and use this URL `https://github.com/s0md3v/roop` in the "install from URL" tab.
+ Download the "inswapper_128.onnx" model from [here](ttps://huggingface.co/henryruhs/roop/resolve/main/inswapper_128.onnx) and put it inside `<web-ui-dir>/extensions/roop/models` directory.
On Windows, Microsoft Visual C++ 14.0 or greater must be installed before installing the extension. [During the install, make sure to include the Python and C++ packages.](https://github.com/s0md3v/roop/issues/153)
## Usage
1. Under "roop" drop-down menu, import an image containing a face.
2. Turn on the "Enable" checkbox
3. That's it, now the generated result will have the face you selected
### The result face is blurry
Use the "Restore Face" option. You can also try the "Upscaler" option or for more finer control, use an upscaler from the "Extras" tab.
### There are multiple faces in result
Select the face numbers you wish to swap using the "Comma separated face number(s)" option.
### The result is totally black
This means roop detected that your image is NSFW.
### Img2Img
You can choose to activate the swap on the source image or on the generated image, or on both using the checkboxes. Activating on source image allows you to start from a given base and apply the diffusion process to it.
Inpainting should work but only the masked part will be swapped.

BIN
example/example.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 683 KiB

44
install.py Normal file
View File

@ -0,0 +1,44 @@
import launch
import os
import pkg_resources
import sys
import traceback
req_file = os.path.join(os.path.dirname(os.path.realpath(__file__)), "requirements.txt")
import os
models_dir = os.path.abspath("models/roop")
if not os.path.exists(models_dir):
os.makedirs(models_dir)
print(f"roop : You can put the model in {models_dir} directory")
print("Check roop requirements")
with open(req_file) as file:
for package in file:
try:
python = sys.executable
package = package.strip()
if not launch.is_installed(package):
print(f"Install {package}")
launch.run_pip(
f"install {package}", f"sd-webui-roop requirement: {package}"
)
elif "==" in package:
package_name, package_version = package.split("==")
installed_version = pkg_resources.get_distribution(package_name).version
if installed_version != package_version:
print(
f"Install {package}, {installed_version} vs {package_version}"
)
launch.run_pip(
f"install {package}",
f"sd-webui-roop requirement: changing {package_name} version from {installed_version} to {package_version}",
)
except Exception as e:
print(e)
print(f"Warning: Failed to install {package}, roop will not work.")
raise e

View File

@ -0,0 +1 @@
The model file required is "inswapper_128.onnx".Mirrors are given the roop project [installation guide](https://github.com/s0md3v/roop/wiki/1.-Installation).

6
requirements.txt Normal file
View File

@ -0,0 +1,6 @@
insightface==0.7.3
onnx==1.14.0
onnxruntime==1.15.0
tensorflow==2.12.0
opencv-python==4.7.0.72
diffusers==0.17.1

57
scripts/cimage.py Normal file
View File

@ -0,0 +1,57 @@
from typing import List, Union, Dict, Set, Tuple
from diffusers.pipelines.stable_diffusion.safety_checker import (
StableDiffusionSafetyChecker,
)
from transformers import AutoFeatureExtractor
import torch
from PIL import Image, ImageFilter
import numpy as np
safety_model_id: str = "CompVis/stable-diffusion-safety-checker"
safety_feature_extractor: AutoFeatureExtractor = None
safety_checker: StableDiffusionSafetyChecker = None
def numpy_to_pil(images: np.ndarray) -> List[Image.Image]:
if images.ndim == 3:
images = images[None, ...]
images = (images * 255).round().astype("uint8")
pil_images = [Image.fromarray(image) for image in images]
return pil_images
def check_image(x_image: np.ndarray) -> Tuple[np.ndarray, List[bool]]:
global safety_feature_extractor, safety_checker
if safety_feature_extractor is None:
safety_feature_extractor = AutoFeatureExtractor.from_pretrained(safety_model_id)
safety_checker = StableDiffusionSafetyChecker.from_pretrained(safety_model_id)
safety_checker_input = safety_feature_extractor(
images=numpy_to_pil(x_image), return_tensors="pt"
)
x_checked_image, hs = safety_checker(
images=x_image, clip_input=safety_checker_input.pixel_values
)
return x_checked_image, hs
def check_batch(x: torch.Tensor) -> torch.Tensor:
x_samples_ddim_numpy = x.cpu().permute(0, 2, 3, 1).numpy()
x_checked_image, _ = check_image(x_samples_ddim_numpy)
x = torch.from_numpy(x_checked_image).permute(0, 3, 1, 2)
return x
def convert_to_sd(img: Image) -> Image:
_, hs = check_image(np.array(img))
if any(hs):
img = (
img.resize((int(img.width * 0.1), int(img.height * 0.1)))
.resize(img.size, Image.BOX)
.filter(ImageFilter.BLUR)
)
return img

199
scripts/faceswap.py Normal file
View File

@ -0,0 +1,199 @@
import gradio as gr
import modules.scripts as scripts
from modules.upscaler import Upscaler, UpscalerData
from modules import scripts, shared, images, scripts_postprocessing
from modules.processing import (
StableDiffusionProcessing,
StableDiffusionProcessingImg2Img,
)
from modules.shared import cmd_opts, opts, state
from PIL import Image
import glob
from modules.face_restoration import FaceRestoration
from scripts.roop_logging import logger
from scripts.swapper import UpscaleOptions, swap_face, ImageResult
from scripts.cimage import check_batch
from scripts.roop_version import version_flag
import os
def get_models():
models_path = os.path.join(
scripts.basedir(), "extensions/sd-webui-roop/models/*"
)
models = glob.glob(models_path)
models_path = os.path.join(scripts.basedir(), "models/roop/*")
models += glob.glob(models_path)
models = [x for x in models if x.endswith(".onnx") or x.endswith(".pth")]
return models
class FaceSwapScript(scripts.Script):
def title(self):
return f"roop"
def show(self, is_img2img):
return scripts.AlwaysVisible
def ui(self, is_img2img):
with gr.Accordion(f"roop {version_flag}", open=False):
with gr.Column():
img = gr.inputs.Image(type="pil")
enable = gr.Checkbox(False, placeholder="enable", label="Enable")
faces_index = gr.Textbox(
value="0",
placeholder="Which face to swap (comma separated), start from 0",
label="Comma separated face number(s)",
)
with gr.Row():
face_restorer_name = gr.Radio(
label="Restore Face",
choices=["None"] + [x.name() for x in shared.face_restorers],
value=shared.face_restorers[0].name(),
type="value",
)
face_restorer_visibility = gr.Slider(
0, 1, 1, step=0.1, label="Restore visibility"
)
upscaler_name = gr.inputs.Dropdown(
choices=[upscaler.name for upscaler in shared.sd_upscalers],
label="Upscaler",
)
upscaler_scale = gr.Slider(1, 8, 1, step=0.1, label="Upscaler scale")
upscaler_visibility = gr.Slider(
0, 1, 1, step=0.1, label="Upscaler visibility (if scale = 1)"
)
models = get_models()
if len(models) == 0:
logger.warning(
"You should at least have one model in models directory, please read the doc here : https://github.com/s0md3v/sd-webui-roop/"
)
model = gr.inputs.Dropdown(
choices=models,
label="Model not found, please download one and reload automatic 1111",
)
else:
model = gr.inputs.Dropdown(
choices=models, label="Model", default=models[0]
)
swap_in_source = gr.Checkbox(
False,
placeholder="Swap face in source image",
label="Swap in source image",
visible=is_img2img,
)
swap_in_generated = gr.Checkbox(
True,
placeholder="Swap face in generated image",
label="Swap in generated image",
visible=is_img2img,
)
return [
img,
enable,
faces_index,
model,
face_restorer_name,
face_restorer_visibility,
upscaler_name,
upscaler_scale,
upscaler_visibility,
swap_in_source,
swap_in_generated,
]
@property
def upscaler(self) -> UpscalerData:
for upscaler in shared.sd_upscalers:
if upscaler.name == self.upscaler_name:
return upscaler
return None
@property
def face_restorer(self) -> FaceRestoration:
for face_restorer in shared.face_restorers:
if face_restorer.name() == self.face_restorer_name:
return face_restorer
return None
@property
def upscale_options(self) -> UpscaleOptions:
return UpscaleOptions(
scale=self.upscaler_scale,
upscaler=self.upscaler,
face_restorer=self.face_restorer,
upscale_visibility=self.upscaler_visibility,
restorer_visibility=self.face_restorer_visibility,
)
def process(
self,
p: StableDiffusionProcessing,
img,
enable,
faces_index,
model,
face_restorer_name,
face_restorer_visibility,
upscaler_name,
upscaler_scale,
upscaler_visibility,
swap_in_source,
swap_in_generated,
):
self.source = img
self.face_restorer_name = face_restorer_name
self.upscaler_scale = upscaler_scale
self.upscaler_visibility = upscaler_visibility
self.face_restorer_visibility = face_restorer_visibility
self.enable = enable
self.upscaler_name = upscaler_name
self.swap_in_generated = swap_in_generated
self.model = model
self.faces_index = {
int(x) for x in faces_index.strip(",").split(",") if x.isnumeric()
}
if len(self.faces_index) == 0:
self.faces_index = {0}
if self.enable:
if self.source is not None:
if isinstance(p, StableDiffusionProcessingImg2Img) and swap_in_source:
logger.info(f"roop enabled, face index %s", self.faces_index)
for i in range(len(p.init_images)):
logger.info(f"Swap in source %s", i)
result = swap_face(
self.source,
p.init_images[i],
faces_index=self.faces_index,
model=self.model,
upscale_options=self.upscale_options,
)
p.init_images[i] = result.image()
else:
logger.error(f"Please provide a source face")
def postprocess_batch(self, p, *args, **kwargs):
if self.enable:
images = kwargs["images"]
images[:] = check_batch(images)[:]
def postprocess_image(self, p, script_pp: scripts.PostprocessImageArgs, *args):
if self.enable and self.swap_in_generated:
if self.source is not None:
image: Image.Image = script_pp.image
result: ImageResult = swap_face(
self.source,
image,
faces_index=self.faces_index,
model=self.model,
upscale_options=self.upscale_options,
)
pp = scripts_postprocessing.PostprocessedImage(result.image())
pp.info = {}
p.extra_generation_params.update(pp.info)
script_pp.image = pp.image

41
scripts/roop_logging.py Normal file
View File

@ -0,0 +1,41 @@
import logging
import copy
import sys
from modules import shared
class ColoredFormatter(logging.Formatter):
COLORS = {
"DEBUG": "\033[0;36m", # CYAN
"INFO": "\033[0;32m", # GREEN
"WARNING": "\033[0;33m", # YELLOW
"ERROR": "\033[0;31m", # RED
"CRITICAL": "\033[0;37;41m", # WHITE ON RED
"RESET": "\033[0m", # RESET COLOR
}
def format(self, record):
colored_record = copy.copy(record)
levelname = colored_record.levelname
seq = self.COLORS.get(levelname, self.COLORS["RESET"])
colored_record.levelname = f"{seq}{levelname}{self.COLORS['RESET']}"
return super().format(colored_record)
# Create a new logger
logger = logging.getLogger("roop")
logger.propagate = False
# Add handler if we don't have one.
if not logger.handlers:
handler = logging.StreamHandler(sys.stdout)
handler.setFormatter(
ColoredFormatter("%(asctime)s - %(name)s - %(levelname)s - %(message)s")
)
logger.addHandler(handler)
# Configure logger
loglevel_string = getattr(shared.cmd_opts, "controlnet_loglevel", "INFO")
loglevel = getattr(logging, loglevel_string.upper(), "info")
logger.setLevel(loglevel)

5
scripts/roop_version.py Normal file
View File

@ -0,0 +1,5 @@
version_flag = "v0.0.1"
from scripts.roop_logging import logger
logger.info(f"roop {version_flag}")

167
scripts/swapper.py Normal file
View File

@ -0,0 +1,167 @@
import copy
import math
import os
import tempfile
from dataclasses import dataclass
from typing import List, Union, Dict, Set, Tuple
import cv2
import numpy as np
from PIL import Image
import insightface
import onnxruntime
from scripts.cimage import convert_to_sd
from modules.face_restoration import FaceRestoration, restore_faces
from modules.upscaler import Upscaler, UpscalerData
from scripts.roop_logging import logger
providers = onnxruntime.get_available_providers()
@dataclass
class UpscaleOptions:
scale: int = 1
upscaler: UpscalerData = None
upscale_visibility: float = 0.5
face_restorer: FaceRestoration = None
restorer_visibility: float = 0.5
def save_image(img: Image, filename: str):
convert_to_sd(img).save(filename)
def cosine_distance(vector1: np.ndarray, vector2: np.ndarray) -> float:
vec1 = vector1.flatten()
vec2 = vector2.flatten()
dot_product = np.dot(vec1, vec2)
norm1 = np.linalg.norm(vec1)
norm2 = np.linalg.norm(vec2)
cosine_distance = 1 - (dot_product / (norm1 * norm2))
return cosine_distance
def cosine_similarity(test_vec: np.ndarray, source_vecs: List[np.ndarray]) -> float:
cos_dist = sum(cosine_distance(test_vec, source_vec) for source_vec in source_vecs)
average_cos_dist = cos_dist / len(source_vecs)
return average_cos_dist
ANALYSIS_MODEL = None
def getAnalysisModel():
global ANALYSIS_MODEL
if ANALYSIS_MODEL is None:
ANALYSIS_MODEL = insightface.app.FaceAnalysis(
name="buffalo_l", providers=providers
)
return ANALYSIS_MODEL
FS_MODEL = None
CURRENT_FS_MODEL_PATH = None
def getFaceSwapModel(model_path: str):
global FS_MODEL
global CURRENT_FS_MODEL_PATH
if CURRENT_FS_MODEL_PATH is None or CURRENT_FS_MODEL_PATH != model_path:
CURRENT_FS_MODEL_PATH = model_path
FS_MODEL = insightface.model_zoo.get_model(model_path, providers=providers)
return FS_MODEL
def upscale_image(image: Image, upscale_options: UpscaleOptions):
result_image = image
if upscale_options.upscaler is not None and upscale_options.upscaler.name != "None":
original_image = result_image.copy()
logger.info(
"Upscale with %s scale = %s",
upscale_options.upscaler.name,
upscale_options.scale,
)
result_image = upscale_options.upscaler.scaler.upscale(
image, upscale_options.scale, upscale_options.upscaler.data_path
)
if upscale_options.scale == 1:
result_image = Image.blend(
original_image, result_image, upscale_options.upscale_visibility
)
if upscale_options.face_restorer is not None:
original_image = result_image.copy()
logger.info("Restore face with %s", upscale_options.face_restorer.name())
numpy_image = np.array(result_image)
numpy_image = upscale_options.face_restorer.restore(numpy_image)
restored_image = Image.fromarray(numpy_image)
result_image = Image.blend(
original_image, restored_image, upscale_options.restorer_visibility
)
return result_image
def get_face_single(img_data: np.ndarray, face_index=0, det_size=(640, 640)):
face_analyser = copy.deepcopy(getAnalysisModel())
face_analyser.prepare(ctx_id=0, det_size=det_size)
face = face_analyser.get(img_data)
if len(face) == 0 and det_size[0] > 320 and det_size[1] > 320:
det_size_half = (det_size[0] // 2, det_size[1] // 2)
return get_face_single(img_data, face_index=face_index, det_size=det_size_half)
try:
return sorted(face, key=lambda x: x.bbox[0])[face_index]
except IndexError:
return None
@dataclass
class ImageResult:
path: Union[str, None] = None
similarity: Union[Dict[int, float], None] = None # face, 0..1
def image(self) -> Union[Image.Image, None]:
if self.path:
return Image.open(self.path)
return None
def swap_face(
source_img: Image.Image,
target_img: Image.Image,
model: Union[str, None] = None,
faces_index: Set[int] = {0},
upscale_options: Union[UpscaleOptions, None] = None,
) -> ImageResult:
fn = tempfile.NamedTemporaryFile(delete=False, suffix=".png")
if model is not None:
source_img = cv2.cvtColor(np.array(source_img), cv2.COLOR_RGB2BGR)
target_img = cv2.cvtColor(np.array(target_img), cv2.COLOR_RGB2BGR)
source_face = get_face_single(source_img, face_index=0)
if source_face is not None:
result = target_img
model_path = os.path.join(os.path.abspath(os.path.dirname(__file__)), model)
face_swapper = getFaceSwapModel(model_path)
for face_num in faces_index:
target_face = get_face_single(target_img, face_index=face_num)
if target_face is not None:
result = face_swapper.get(result, target_face, source_face)
else:
logger.info(f"No target face found for {face_num}")
result_image = Image.fromarray(cv2.cvtColor(result, cv2.COLOR_BGR2RGB))
if upscale_options is not None:
result_image = upscale_image(result_image, upscale_options)
save_image(result_image, fn.name)
else:
logger.info("No source face found")
return ImageResult(path=fn.name)