Refactoring after PR
+VersionUP (0.5.1 beta1)
This commit is contained in:
parent
8b66464e6f
commit
2c2d40508a
@ -2,7 +2,7 @@
|
||||
|
||||
<img src="https://github.com/Gourieff/Assets/raw/main/sd-webui-reactor/ReActor_logo_red.png?raw=true" alt="logo" width="180px"/>
|
||||
|
||||

|
||||

|
||||
|
||||
<a href='https://ko-fi.com/gourieff' target='_blank'><img height='33' src='https://storage.ko-fi.com/cdn/kofi3.png?v=3' border='0' alt='Buy Me a Coffee at ko-fi.com' /></a>
|
||||
|
||||
|
||||
@ -2,7 +2,7 @@
|
||||
|
||||
<img src="https://github.com/Gourieff/Assets/raw/main/sd-webui-reactor/ReActor_logo_red.png?raw=true" alt="logo" width="180px"/>
|
||||
|
||||

|
||||

|
||||
|
||||
<a href='https://ko-fi.com/gourieff' target='_blank'><img height='33' src='https://storage.ko-fi.com/cdn/kofi3.png?v=3' border='0' alt='Buy Me a Coffee at ko-fi.com' /></a>
|
||||
|
||||
|
||||
176
modules/reactor_mask.py
Normal file
176
modules/reactor_mask.py
Normal file
@ -0,0 +1,176 @@
|
||||
import cv2
|
||||
import numpy as np
|
||||
from PIL import Image, ImageDraw
|
||||
|
||||
from torchvision.transforms.functional import to_pil_image
|
||||
|
||||
from scripts.reactor_logger import logger
|
||||
from scripts.inferencers.bisenet_mask_generator import BiSeNetMaskGenerator
|
||||
from scripts.entities.face import FaceArea
|
||||
from scripts.entities.rect import Rect
|
||||
|
||||
|
||||
colors = [
|
||||
(255, 0, 0),
|
||||
(0, 255, 0),
|
||||
(0, 0, 255),
|
||||
(255, 255, 0),
|
||||
(255, 0, 255),
|
||||
(0, 255, 255),
|
||||
(255, 255, 255),
|
||||
(128, 0, 0),
|
||||
(0, 128, 0),
|
||||
(128, 128, 0),
|
||||
(0, 0, 128),
|
||||
(0, 128, 128),
|
||||
]
|
||||
|
||||
def color_generator(colors):
|
||||
while True:
|
||||
for color in colors:
|
||||
yield color
|
||||
|
||||
|
||||
def process_face_image(
|
||||
face: FaceArea,
|
||||
**kwargs,
|
||||
) -> Image:
|
||||
image = np.array(face.image)
|
||||
overlay = image.copy()
|
||||
color_iter = color_generator(colors)
|
||||
cv2.rectangle(overlay, (0, 0), (image.shape[1], image.shape[0]), next(color_iter), -1)
|
||||
l, t, r, b = face.face_area_on_image
|
||||
cv2.rectangle(overlay, (l, t), (r, b), (0, 0, 0), 10)
|
||||
if face.landmarks_on_image is not None:
|
||||
for landmark in face.landmarks_on_image:
|
||||
cv2.circle(overlay, (int(landmark.x), int(landmark.y)), 6, (0, 0, 0), 10)
|
||||
alpha = 0.3
|
||||
output = cv2.addWeighted(image, 1 - alpha, overlay, alpha, 0)
|
||||
|
||||
return Image.fromarray(output)
|
||||
|
||||
|
||||
def apply_face_mask(swapped_image:np.ndarray,target_image:np.ndarray,target_face,entire_mask_image:np.array)->np.ndarray:
|
||||
logger.status("Correcting Face Mask")
|
||||
mask_generator = BiSeNetMaskGenerator()
|
||||
face = FaceArea(target_image,Rect.from_ndarray(np.array(target_face.bbox)),1.6,512,"")
|
||||
face_image = np.array(face.image)
|
||||
process_face_image(face)
|
||||
face_area_on_image = face.face_area_on_image
|
||||
mask = mask_generator.generate_mask(
|
||||
face_image,
|
||||
face_area_on_image=face_area_on_image,
|
||||
affected_areas=["Face"],
|
||||
mask_size=0,
|
||||
use_minimal_area=True
|
||||
)
|
||||
mask = cv2.blur(mask, (12, 12))
|
||||
# """entire_mask_image = np.zeros_like(target_image)"""
|
||||
larger_mask = cv2.resize(mask, dsize=(face.width, face.height))
|
||||
entire_mask_image[
|
||||
face.top : face.bottom,
|
||||
face.left : face.right,
|
||||
] = larger_mask
|
||||
|
||||
result = Image.composite(Image.fromarray(swapped_image),Image.fromarray(target_image), Image.fromarray(entire_mask_image).convert("L"))
|
||||
return np.array(result)
|
||||
|
||||
|
||||
def rotate_array(image: np.ndarray, angle: float) -> np.ndarray:
|
||||
if angle == 0:
|
||||
return image
|
||||
|
||||
h, w = image.shape[:2]
|
||||
center = (w // 2, h // 2)
|
||||
|
||||
M = cv2.getRotationMatrix2D(center, angle, 1.0)
|
||||
return cv2.warpAffine(image, M, (w, h))
|
||||
|
||||
|
||||
def rotate_image(image: Image, angle: float) -> Image:
|
||||
if angle == 0:
|
||||
return image
|
||||
return Image.fromarray(rotate_array(np.array(image), angle))
|
||||
|
||||
|
||||
def correct_face_tilt(angle: float) -> bool:
|
||||
angle = abs(angle)
|
||||
if angle > 180:
|
||||
angle = 360 - angle
|
||||
return angle > 40
|
||||
|
||||
|
||||
def _dilate(arr: np.ndarray, value: int) -> np.ndarray:
|
||||
kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (value, value))
|
||||
return cv2.dilate(arr, kernel, iterations=1)
|
||||
|
||||
|
||||
def _erode(arr: np.ndarray, value: int) -> np.ndarray:
|
||||
kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (value, value))
|
||||
return cv2.erode(arr, kernel, iterations=1)
|
||||
|
||||
|
||||
def dilate_erode(img: Image.Image, value: int) -> Image.Image:
|
||||
"""
|
||||
The dilate_erode function takes an image and a value.
|
||||
If the value is positive, it dilates the image by that amount.
|
||||
If the value is negative, it erodes the image by that amount.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
img: PIL.Image.Image
|
||||
the image to be processed
|
||||
value: int
|
||||
kernel size of dilation or erosion
|
||||
|
||||
Returns
|
||||
-------
|
||||
PIL.Image.Image
|
||||
The image that has been dilated or eroded
|
||||
"""
|
||||
if value == 0:
|
||||
return img
|
||||
|
||||
arr = np.array(img)
|
||||
arr = _dilate(arr, value) if value > 0 else _erode(arr, -value)
|
||||
|
||||
return Image.fromarray(arr)
|
||||
|
||||
def mask_to_pil(masks, shape: tuple[int, int]) -> list[Image.Image]:
|
||||
"""
|
||||
Parameters
|
||||
----------
|
||||
masks: torch.Tensor, dtype=torch.float32, shape=(N, H, W).
|
||||
The device can be CUDA, but `to_pil_image` takes care of that.
|
||||
|
||||
shape: tuple[int, int]
|
||||
(width, height) of the original image
|
||||
"""
|
||||
n = masks.shape[0]
|
||||
return [to_pil_image(masks[i], mode="L").resize(shape) for i in range(n)]
|
||||
|
||||
def create_mask_from_bbox(
|
||||
bboxes: list[list[float]], shape: tuple[int, int]
|
||||
) -> list[Image.Image]:
|
||||
"""
|
||||
Parameters
|
||||
----------
|
||||
bboxes: list[list[float]]
|
||||
list of [x1, y1, x2, y2]
|
||||
bounding boxes
|
||||
shape: tuple[int, int]
|
||||
shape of the image (width, height)
|
||||
|
||||
Returns
|
||||
-------
|
||||
masks: list[Image.Image]
|
||||
A list of masks
|
||||
|
||||
"""
|
||||
masks = []
|
||||
for bbox in bboxes:
|
||||
mask = Image.new("L", shape, 0)
|
||||
mask_draw = ImageDraw.Draw(mask)
|
||||
mask_draw.rectangle(bbox, fill=255)
|
||||
masks.append(mask)
|
||||
return masks
|
||||
@ -9,7 +9,7 @@ from PIL import Image
|
||||
from scripts.entities.rect import Point, Rect
|
||||
|
||||
|
||||
class Face:
|
||||
class FaceArea:
|
||||
def __init__(self, entire_image: np.ndarray, face_area: Rect, face_margin: float, face_size: int, upscaler: str):
|
||||
self.face_area = face_area
|
||||
self.center = face_area.center
|
||||
|
||||
@ -7,9 +7,7 @@ import torch
|
||||
from facexlib.parsing import init_parsing_model
|
||||
from facexlib.utils.misc import img2tensor
|
||||
from torchvision.transforms.functional import normalize
|
||||
from PIL import Image
|
||||
from scripts.inferencers.mask_generator import MaskGenerator
|
||||
from scripts.reactor_logger import logger
|
||||
|
||||
class BiSeNetMaskGenerator(MaskGenerator):
|
||||
def __init__(self) -> None:
|
||||
@ -28,7 +26,7 @@ class BiSeNetMaskGenerator(MaskGenerator):
|
||||
fallback_ratio: float = 0.25,
|
||||
**kwargs,
|
||||
) -> np.ndarray:
|
||||
original_face_image = face_image
|
||||
# original_face_image = face_image
|
||||
face_image = face_image.copy()
|
||||
face_image = face_image[:, :, ::-1]
|
||||
|
||||
@ -59,11 +57,11 @@ class BiSeNetMaskGenerator(MaskGenerator):
|
||||
if w != 512 or h != 512:
|
||||
mask = cv2.resize(mask, dsize=(w, h))
|
||||
|
||||
"""if MaskGenerator.calculate_mask_coverage(mask) < fallback_ratio:
|
||||
logger.info("Use fallback mask generator")
|
||||
mask = self.fallback_mask_generator.generate_mask(
|
||||
original_face_image, face_area_on_image, use_minimal_area=True
|
||||
)"""
|
||||
# """if MaskGenerator.calculate_mask_coverage(mask) < fallback_ratio:
|
||||
# logger.info("Use fallback mask generator")
|
||||
# mask = self.fallback_mask_generator.generate_mask(
|
||||
# original_face_image, face_area_on_image, use_minimal_area=True
|
||||
# )"""
|
||||
|
||||
return mask
|
||||
|
||||
|
||||
@ -4,7 +4,6 @@ from typing import Tuple
|
||||
import cv2
|
||||
import numpy as np
|
||||
|
||||
|
||||
class MaskGenerator(ABC):
|
||||
@abstractmethod
|
||||
def name(self) -> str:
|
||||
|
||||
@ -66,8 +66,7 @@ class FaceSwapScript(scripts.Script):
|
||||
img = gr.Image(type="pil")
|
||||
enable = gr.Checkbox(False, label="Enable", info=f"The Fast and Simple FaceSwap Extension - {version_flag}")
|
||||
save_original = gr.Checkbox(False, label="Save Original", info="Save the original image(s) made before swapping; If you use \"img2img\" - this option will affect with \"Swap in generated\" only")
|
||||
mask_face = gr.Checkbox(False, label="Mask Faces", info="Attempt to mask only the faces and eliminate pixelation of the image around the contours.")
|
||||
|
||||
mask_face = gr.Checkbox(False, label="Face Mask Correction", info="Apply this option if you see some pixelation around face contours")
|
||||
gr.Markdown("<br>")
|
||||
gr.Markdown("Source Image (above):")
|
||||
with gr.Row():
|
||||
@ -213,7 +212,7 @@ class FaceSwapScript(scripts.Script):
|
||||
source_hash_check,
|
||||
target_hash_check,
|
||||
device,
|
||||
mask_face
|
||||
mask_face,
|
||||
]
|
||||
|
||||
|
||||
@ -267,7 +266,7 @@ class FaceSwapScript(scripts.Script):
|
||||
source_hash_check,
|
||||
target_hash_check,
|
||||
device,
|
||||
mask_face
|
||||
mask_face,
|
||||
):
|
||||
self.enable = enable
|
||||
if self.enable:
|
||||
@ -316,6 +315,8 @@ class FaceSwapScript(scripts.Script):
|
||||
self.source_hash_check = True
|
||||
if self.target_hash_check is None:
|
||||
self.target_hash_check = False
|
||||
if self.mask_face is None:
|
||||
self.mask_face = False
|
||||
|
||||
set_Device(self.device)
|
||||
|
||||
@ -339,7 +340,7 @@ class FaceSwapScript(scripts.Script):
|
||||
source_hash_check=self.source_hash_check,
|
||||
target_hash_check=self.target_hash_check,
|
||||
device=self.device,
|
||||
mask_face=mask_face
|
||||
mask_face=self.mask_face,
|
||||
)
|
||||
p.init_images[i] = result
|
||||
# result_path = get_image_path(p.init_images[i], p.outpath_samples, "", p.all_seeds[i], p.all_prompts[i], "txt", p=p, suffix="-swapped")
|
||||
@ -391,7 +392,7 @@ class FaceSwapScript(scripts.Script):
|
||||
source_hash_check=self.source_hash_check,
|
||||
target_hash_check=self.target_hash_check,
|
||||
device=self.device,
|
||||
mask_face=self.mask_face
|
||||
mask_face=self.mask_face,
|
||||
)
|
||||
if result is not None and swapped > 0:
|
||||
result_images.append(result)
|
||||
@ -449,7 +450,7 @@ class FaceSwapScript(scripts.Script):
|
||||
source_hash_check=self.source_hash_check,
|
||||
target_hash_check=self.target_hash_check,
|
||||
device=self.device,
|
||||
mask_face=self.mask_face
|
||||
mask_face=self.mask_face,
|
||||
)
|
||||
try:
|
||||
pp = scripts_postprocessing.PostprocessedImage(result)
|
||||
@ -476,8 +477,7 @@ class FaceSwapScriptExtras(scripts_postprocessing.ScriptPostprocessing):
|
||||
with gr.Column():
|
||||
img = gr.Image(type="pil")
|
||||
enable = gr.Checkbox(False, label="Enable", info=f"The Fast and Simple FaceSwap Extension - {version_flag}")
|
||||
mask_face = gr.Checkbox(False, label="Mask Faces", info="Attempt to mask only the faces and eliminate pixelation of the image around the contours.")
|
||||
|
||||
mask_face = gr.Checkbox(False, label="Face Mask Correction", info="Apply this option if you see some pixelation around face contours")
|
||||
gr.Markdown("Source Image (above):")
|
||||
with gr.Row():
|
||||
source_faces_index = gr.Textbox(
|
||||
@ -592,7 +592,7 @@ class FaceSwapScriptExtras(scripts_postprocessing.ScriptPostprocessing):
|
||||
'gender_target': gender_target,
|
||||
'codeformer_weight': codeformer_weight,
|
||||
'device': device,
|
||||
'mask_face':mask_face
|
||||
'mask_face': mask_face,
|
||||
}
|
||||
return args
|
||||
|
||||
@ -657,6 +657,8 @@ class FaceSwapScriptExtras(scripts_postprocessing.ScriptPostprocessing):
|
||||
self.source_faces_index = [0]
|
||||
if len(self.faces_index) == 0:
|
||||
self.faces_index = [0]
|
||||
if self.mask_face is None:
|
||||
self.mask_face = False
|
||||
|
||||
current_job_number = shared.state.job_no + 1
|
||||
job_count = shared.state.job_count
|
||||
@ -681,7 +683,7 @@ class FaceSwapScriptExtras(scripts_postprocessing.ScriptPostprocessing):
|
||||
source_hash_check=True,
|
||||
target_hash_check=True,
|
||||
device=self.device,
|
||||
mask_face=self.mask_face
|
||||
mask_face=self.mask_face,
|
||||
)
|
||||
try:
|
||||
pp.info["ReActor"] = True
|
||||
|
||||
@ -5,13 +5,10 @@ from typing import List, Union
|
||||
|
||||
import cv2
|
||||
import numpy as np
|
||||
from numpy import uint8
|
||||
from PIL import Image, ImageDraw
|
||||
from scripts.inferencers.bisenet_mask_generator import BiSeNetMaskGenerator
|
||||
from scripts.entities.face import Face
|
||||
from scripts.entities.rect import Rect
|
||||
from PIL import Image
|
||||
|
||||
import insightface
|
||||
from torchvision.transforms.functional import to_pil_image
|
||||
|
||||
from scripts.reactor_helpers import get_image_md5hash, get_Device
|
||||
from modules.face_restoration import FaceRestoration
|
||||
try: # A1111
|
||||
@ -21,6 +18,7 @@ except: # SD.Next
|
||||
from modules.upscaler import UpscalerData
|
||||
from modules.shared import state
|
||||
from scripts.reactor_logger import logger
|
||||
from modules.reactor_mask import apply_face_mask
|
||||
|
||||
try:
|
||||
from modules.paths_internal import models_path
|
||||
@ -310,7 +308,7 @@ def swap_face(
|
||||
source_hash_check: bool = True,
|
||||
target_hash_check: bool = False,
|
||||
device: str = "CPU",
|
||||
mask_face:bool = False
|
||||
mask_face: bool = False,
|
||||
):
|
||||
global SOURCE_FACES, SOURCE_IMAGE_HASH, TARGET_FACES, TARGET_IMAGE_HASH, PROVIDERS
|
||||
result_image = target_img
|
||||
@ -493,160 +491,3 @@ def swap_face(
|
||||
logger.status("No source face(s) found")
|
||||
|
||||
return result_image, output, swapped
|
||||
|
||||
|
||||
|
||||
def apply_face_mask(swapped_image:np.ndarray,target_image:np.ndarray,target_face,entire_mask_image:np.array)->np.ndarray:
|
||||
logger.status("Masking Face")
|
||||
mask_generator = BiSeNetMaskGenerator()
|
||||
face = Face(target_image,Rect.from_ndarray(np.array(target_face.bbox)),1.6,512,"")
|
||||
face_image = np.array(face.image)
|
||||
process_face_image(face)
|
||||
face_area_on_image = face.face_area_on_image
|
||||
mask = mask_generator.generate_mask(face_image,face_area_on_image=face_area_on_image,affected_areas=["Face"],mask_size=0,use_minimal_area=True)
|
||||
mask = cv2.blur(mask, (12, 12))
|
||||
"""entire_mask_image = np.zeros_like(target_image)"""
|
||||
larger_mask = cv2.resize(mask, dsize=(face.width, face.height))
|
||||
entire_mask_image[
|
||||
face.top : face.bottom,
|
||||
face.left : face.right,
|
||||
] = larger_mask
|
||||
|
||||
|
||||
result = Image.composite(Image.fromarray(swapped_image),Image.fromarray(target_image), Image.fromarray(entire_mask_image).convert("L"))
|
||||
return np.array(result)
|
||||
|
||||
|
||||
def correct_face_tilt(angle: float) -> bool:
|
||||
|
||||
angle = abs(angle)
|
||||
if angle > 180:
|
||||
angle = 360 - angle
|
||||
return angle > 40
|
||||
def _dilate(arr: np.ndarray, value: int) -> np.ndarray:
|
||||
kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (value, value))
|
||||
return cv2.dilate(arr, kernel, iterations=1)
|
||||
|
||||
|
||||
def _erode(arr: np.ndarray, value: int) -> np.ndarray:
|
||||
kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (value, value))
|
||||
return cv2.erode(arr, kernel, iterations=1)
|
||||
colors = [
|
||||
(255, 0, 0),
|
||||
(0, 255, 0),
|
||||
(0, 0, 255),
|
||||
(255, 255, 0),
|
||||
(255, 0, 255),
|
||||
(0, 255, 255),
|
||||
(255, 255, 255),
|
||||
(128, 0, 0),
|
||||
(0, 128, 0),
|
||||
(128, 128, 0),
|
||||
(0, 0, 128),
|
||||
(0, 128, 128),
|
||||
]
|
||||
|
||||
|
||||
def color_generator(colors):
|
||||
while True:
|
||||
for color in colors:
|
||||
yield color
|
||||
|
||||
|
||||
color_iter = color_generator(colors)
|
||||
def process_face_image(
|
||||
face: Face,
|
||||
**kwargs,
|
||||
) -> Image:
|
||||
image = np.array(face.image)
|
||||
overlay = image.copy()
|
||||
cv2.rectangle(overlay, (0, 0), (image.shape[1], image.shape[0]), next(color_iter), -1)
|
||||
l, t, r, b = face.face_area_on_image
|
||||
cv2.rectangle(overlay, (l, t), (r, b), (0, 0, 0), 10)
|
||||
if face.landmarks_on_image is not None:
|
||||
for landmark in face.landmarks_on_image:
|
||||
cv2.circle(overlay, (int(landmark.x), int(landmark.y)), 6, (0, 0, 0), 10)
|
||||
alpha = 0.3
|
||||
output = cv2.addWeighted(image, 1 - alpha, overlay, alpha, 0)
|
||||
|
||||
return Image.fromarray(output)
|
||||
def dilate_erode(img: Image.Image, value: int) -> Image.Image:
|
||||
"""
|
||||
The dilate_erode function takes an image and a value.
|
||||
If the value is positive, it dilates the image by that amount.
|
||||
If the value is negative, it erodes the image by that amount.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
img: PIL.Image.Image
|
||||
the image to be processed
|
||||
value: int
|
||||
kernel size of dilation or erosion
|
||||
|
||||
Returns
|
||||
-------
|
||||
PIL.Image.Image
|
||||
The image that has been dilated or eroded
|
||||
"""
|
||||
if value == 0:
|
||||
return img
|
||||
|
||||
arr = np.array(img)
|
||||
arr = _dilate(arr, value) if value > 0 else _erode(arr, -value)
|
||||
|
||||
return Image.fromarray(arr)
|
||||
|
||||
def mask_to_pil(masks, shape: tuple[int, int]) -> list[Image.Image]:
|
||||
"""
|
||||
Parameters
|
||||
----------
|
||||
masks: torch.Tensor, dtype=torch.float32, shape=(N, H, W).
|
||||
The device can be CUDA, but `to_pil_image` takes care of that.
|
||||
|
||||
shape: tuple[int, int]
|
||||
(width, height) of the original image
|
||||
"""
|
||||
n = masks.shape[0]
|
||||
return [to_pil_image(masks[i], mode="L").resize(shape) for i in range(n)]
|
||||
|
||||
def create_mask_from_bbox(
|
||||
bboxes: list[list[float]], shape: tuple[int, int]
|
||||
) -> list[Image.Image]:
|
||||
"""
|
||||
Parameters
|
||||
----------
|
||||
bboxes: list[list[float]]
|
||||
list of [x1, y1, x2, y2]
|
||||
bounding boxes
|
||||
shape: tuple[int, int]
|
||||
shape of the image (width, height)
|
||||
|
||||
Returns
|
||||
-------
|
||||
masks: list[Image.Image]
|
||||
A list of masks
|
||||
|
||||
"""
|
||||
masks = []
|
||||
for bbox in bboxes:
|
||||
mask = Image.new("L", shape, 0)
|
||||
mask_draw = ImageDraw.Draw(mask)
|
||||
mask_draw.rectangle(bbox, fill=255)
|
||||
masks.append(mask)
|
||||
return masks
|
||||
|
||||
def rotate_image(image: Image, angle: float) -> Image:
|
||||
if angle == 0:
|
||||
return image
|
||||
return Image.fromarray(rotate_array(np.array(image), angle))
|
||||
|
||||
|
||||
def rotate_array(image: np.ndarray, angle: float) -> np.ndarray:
|
||||
if angle == 0:
|
||||
return image
|
||||
|
||||
h, w = image.shape[:2]
|
||||
center = (w // 2, h // 2)
|
||||
|
||||
M = cv2.getRotationMatrix2D(center, angle, 1.0)
|
||||
return cv2.warpAffine(image, M, (w, h))
|
||||
|
||||
@ -1,5 +1,5 @@
|
||||
app_title = "ReActor"
|
||||
version_flag = "v0.5.0"
|
||||
version_flag = "v0.5.1-b1"
|
||||
|
||||
from scripts.reactor_logger import logger, get_Run, set_Run
|
||||
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user