Merge pull request #208 from jiveabillion/main
UPDATE: Add Masking option
This commit is contained in:
commit
8b66464e6f
147
scripts/entities/face.py
Normal file
147
scripts/entities/face.py
Normal file
@ -0,0 +1,147 @@
|
||||
import traceback
|
||||
|
||||
import cv2
|
||||
import numpy as np
|
||||
from modules import images
|
||||
from PIL import Image
|
||||
|
||||
|
||||
from scripts.entities.rect import Point, Rect
|
||||
|
||||
|
||||
class Face:
|
||||
def __init__(self, entire_image: np.ndarray, face_area: Rect, face_margin: float, face_size: int, upscaler: str):
|
||||
self.face_area = face_area
|
||||
self.center = face_area.center
|
||||
left, top, right, bottom = face_area.to_square()
|
||||
|
||||
self.left, self.top, self.right, self.bottom = self.__ensure_margin(
|
||||
left, top, right, bottom, entire_image, face_margin
|
||||
)
|
||||
|
||||
self.width = self.right - self.left
|
||||
self.height = self.bottom - self.top
|
||||
|
||||
self.image = self.__crop_face_image(entire_image, face_size, upscaler)
|
||||
self.face_size = face_size
|
||||
self.scale_factor = face_size / self.width
|
||||
self.face_area_on_image = self.__get_face_area_on_image()
|
||||
self.landmarks_on_image = self.__get_landmarks_on_image()
|
||||
|
||||
def __get_face_area_on_image(self):
|
||||
left = int((self.face_area.left - self.left) * self.scale_factor)
|
||||
top = int((self.face_area.top - self.top) * self.scale_factor)
|
||||
right = int((self.face_area.right - self.left) * self.scale_factor)
|
||||
bottom = int((self.face_area.bottom - self.top) * self.scale_factor)
|
||||
return self.__clip_values(left, top, right, bottom)
|
||||
|
||||
def __get_landmarks_on_image(self):
|
||||
landmarks = []
|
||||
if self.face_area.landmarks is not None:
|
||||
for landmark in self.face_area.landmarks:
|
||||
landmarks.append(
|
||||
Point(
|
||||
int((landmark.x - self.left) * self.scale_factor),
|
||||
int((landmark.y - self.top) * self.scale_factor),
|
||||
)
|
||||
)
|
||||
return landmarks
|
||||
|
||||
def __crop_face_image(self, entire_image: np.ndarray, face_size: int, upscaler: str):
|
||||
cropped = entire_image[self.top : self.bottom, self.left : self.right, :]
|
||||
if upscaler:
|
||||
return images.resize_image(0, Image.fromarray(cropped), face_size, face_size, upscaler)
|
||||
else:
|
||||
return Image.fromarray(cv2.resize(cropped, dsize=(face_size, face_size)))
|
||||
|
||||
def __ensure_margin(self, left: int, top: int, right: int, bottom: int, entire_image: np.ndarray, margin: float):
|
||||
entire_height, entire_width = entire_image.shape[:2]
|
||||
|
||||
side_length = right - left
|
||||
margin = min(min(entire_height, entire_width) / side_length, margin)
|
||||
diff = int((side_length * margin - side_length) / 2)
|
||||
|
||||
top = top - diff
|
||||
bottom = bottom + diff
|
||||
left = left - diff
|
||||
right = right + diff
|
||||
|
||||
if top < 0:
|
||||
bottom = bottom - top
|
||||
top = 0
|
||||
if left < 0:
|
||||
right = right - left
|
||||
left = 0
|
||||
|
||||
if bottom > entire_height:
|
||||
top = top - (bottom - entire_height)
|
||||
bottom = entire_height
|
||||
if right > entire_width:
|
||||
left = left - (right - entire_width)
|
||||
right = entire_width
|
||||
|
||||
return left, top, right, bottom
|
||||
|
||||
def get_angle(self) -> float:
|
||||
landmarks = getattr(self.face_area, "landmarks", None)
|
||||
if landmarks is None:
|
||||
return 0
|
||||
|
||||
eye1 = getattr(landmarks, "eye1", None)
|
||||
eye2 = getattr(landmarks, "eye2", None)
|
||||
if eye2 is None or eye1 is None:
|
||||
return 0
|
||||
|
||||
try:
|
||||
dx = eye2.x - eye1.x
|
||||
dy = eye2.y - eye1.y
|
||||
if dx == 0:
|
||||
dx = 1
|
||||
angle = np.arctan(dy / dx) * 180 / np.pi
|
||||
|
||||
if dx < 0:
|
||||
angle = (angle + 180) % 360
|
||||
return angle
|
||||
except Exception:
|
||||
print(traceback.format_exc())
|
||||
return 0
|
||||
|
||||
def rotate_face_area_on_image(self, angle: float):
|
||||
center = [
|
||||
(self.face_area_on_image[0] + self.face_area_on_image[2]) / 2,
|
||||
(self.face_area_on_image[1] + self.face_area_on_image[3]) / 2,
|
||||
]
|
||||
|
||||
points = [
|
||||
[self.face_area_on_image[0], self.face_area_on_image[1]],
|
||||
[self.face_area_on_image[2], self.face_area_on_image[3]],
|
||||
]
|
||||
|
||||
angle = np.radians(angle)
|
||||
rot_matrix = np.array([[np.cos(angle), -np.sin(angle)], [np.sin(angle), np.cos(angle)]])
|
||||
|
||||
points = np.array(points) - center
|
||||
points = np.dot(points, rot_matrix.T)
|
||||
points += center
|
||||
left, top, right, bottom = (int(points[0][0]), int(points[0][1]), int(points[1][0]), int(points[1][1]))
|
||||
|
||||
left, right = (right, left) if left > right else (left, right)
|
||||
top, bottom = (bottom, top) if top > bottom else (top, bottom)
|
||||
|
||||
width, height = right - left, bottom - top
|
||||
if width < height:
|
||||
left, right = left - (height - width) // 2, right + (height - width) // 2
|
||||
elif height < width:
|
||||
top, bottom = top - (width - height) // 2, bottom + (width - height) // 2
|
||||
return self.__clip_values(left, top, right, bottom)
|
||||
|
||||
def __clip_values(self, *args):
|
||||
result = []
|
||||
for val in args:
|
||||
if val < 0:
|
||||
result.append(0)
|
||||
elif val > self.face_size:
|
||||
result.append(self.face_size)
|
||||
else:
|
||||
result.append(val)
|
||||
return tuple(result)
|
||||
78
scripts/entities/rect.py
Normal file
78
scripts/entities/rect.py
Normal file
@ -0,0 +1,78 @@
|
||||
from typing import Dict, NamedTuple, Tuple
|
||||
|
||||
import numpy as np
|
||||
|
||||
|
||||
class Point(NamedTuple):
|
||||
x: int
|
||||
y: int
|
||||
|
||||
|
||||
class Landmarks(NamedTuple):
|
||||
eye1: Point
|
||||
eye2: Point
|
||||
nose: Point
|
||||
mouth1: Point
|
||||
mouth2: Point
|
||||
|
||||
|
||||
class Rect:
|
||||
def __init__(
|
||||
self,
|
||||
left: int,
|
||||
top: int,
|
||||
right: int,
|
||||
bottom: int,
|
||||
tag: str = "face",
|
||||
landmarks: Landmarks = None,
|
||||
attributes: Dict[str, str] = {},
|
||||
) -> None:
|
||||
self.tag = tag
|
||||
self.left = left
|
||||
self.top = top
|
||||
self.right = right
|
||||
self.bottom = bottom
|
||||
self.center = int((right + left) / 2)
|
||||
self.middle = int((top + bottom) / 2)
|
||||
self.width = right - left
|
||||
self.height = bottom - top
|
||||
self.size = self.width * self.height
|
||||
self.landmarks = landmarks
|
||||
self.attributes = attributes
|
||||
|
||||
@classmethod
|
||||
def from_ndarray(
|
||||
cls,
|
||||
face_box: np.ndarray,
|
||||
tag: str = "face",
|
||||
landmarks: Landmarks = None,
|
||||
attributes: Dict[str, str] = {},
|
||||
) -> "Rect":
|
||||
left, top, right, bottom, *_ = list(map(int, face_box))
|
||||
return cls(left, top, right, bottom, tag, landmarks, attributes)
|
||||
|
||||
def to_tuple(self) -> Tuple[int, int, int, int]:
|
||||
return self.left, self.top, self.right, self.bottom
|
||||
|
||||
def to_square(self):
|
||||
left, top, right, bottom = self.to_tuple()
|
||||
|
||||
width = right - left
|
||||
height = bottom - top
|
||||
|
||||
if width % 2 == 1:
|
||||
right = right + 1
|
||||
width = width + 1
|
||||
if height % 2 == 1:
|
||||
bottom = bottom + 1
|
||||
height = height + 1
|
||||
|
||||
diff = int(abs(width - height) / 2)
|
||||
if width > height:
|
||||
top = top - diff
|
||||
bottom = bottom + diff
|
||||
else:
|
||||
left = left - diff
|
||||
right = right + diff
|
||||
|
||||
return left, top, right, bottom
|
||||
88
scripts/inferencers/bisenet_mask_generator.py
Normal file
88
scripts/inferencers/bisenet_mask_generator.py
Normal file
@ -0,0 +1,88 @@
|
||||
from typing import List, Tuple
|
||||
|
||||
import cv2
|
||||
import modules.shared as shared
|
||||
import numpy as np
|
||||
import torch
|
||||
from facexlib.parsing import init_parsing_model
|
||||
from facexlib.utils.misc import img2tensor
|
||||
from torchvision.transforms.functional import normalize
|
||||
from PIL import Image
|
||||
from scripts.inferencers.mask_generator import MaskGenerator
|
||||
from scripts.reactor_logger import logger
|
||||
|
||||
class BiSeNetMaskGenerator(MaskGenerator):
|
||||
def __init__(self) -> None:
|
||||
self.mask_model = init_parsing_model(device=shared.device)
|
||||
|
||||
def name(self):
|
||||
return "BiSeNet"
|
||||
|
||||
def generate_mask(
|
||||
self,
|
||||
face_image: np.ndarray,
|
||||
face_area_on_image: Tuple[int, int, int, int],
|
||||
affected_areas: List[str],
|
||||
mask_size: int,
|
||||
use_minimal_area: bool,
|
||||
fallback_ratio: float = 0.25,
|
||||
**kwargs,
|
||||
) -> np.ndarray:
|
||||
original_face_image = face_image
|
||||
face_image = face_image.copy()
|
||||
face_image = face_image[:, :, ::-1]
|
||||
|
||||
if use_minimal_area:
|
||||
face_image = MaskGenerator.mask_non_face_areas(face_image, face_area_on_image)
|
||||
|
||||
h, w, _ = face_image.shape
|
||||
|
||||
if w != 512 or h != 512:
|
||||
rw = (int(w * (512 / w)) // 8) * 8
|
||||
rh = (int(h * (512 / h)) // 8) * 8
|
||||
face_image = cv2.resize(face_image, dsize=(rw, rh))
|
||||
|
||||
face_tensor = img2tensor(face_image.astype("float32") / 255.0, float32=True)
|
||||
normalize(face_tensor, (0.5, 0.5, 0.5), (0.5, 0.5, 0.5), inplace=True)
|
||||
face_tensor = torch.unsqueeze(face_tensor, 0).to(shared.device)
|
||||
|
||||
with torch.no_grad():
|
||||
face = self.mask_model(face_tensor)[0]
|
||||
face = face.squeeze(0).cpu().numpy().argmax(0)
|
||||
face = face.copy().astype(np.uint8)
|
||||
|
||||
mask = self.__to_mask(face, affected_areas)
|
||||
|
||||
if mask_size > 0:
|
||||
mask = cv2.dilate(mask, np.ones((5, 5), np.uint8), iterations=mask_size)
|
||||
|
||||
if w != 512 or h != 512:
|
||||
mask = cv2.resize(mask, dsize=(w, h))
|
||||
|
||||
"""if MaskGenerator.calculate_mask_coverage(mask) < fallback_ratio:
|
||||
logger.info("Use fallback mask generator")
|
||||
mask = self.fallback_mask_generator.generate_mask(
|
||||
original_face_image, face_area_on_image, use_minimal_area=True
|
||||
)"""
|
||||
|
||||
return mask
|
||||
|
||||
def __to_mask(self, face: np.ndarray, affected_areas: List[str]) -> np.ndarray:
|
||||
keep_face = "Face" in affected_areas
|
||||
keep_neck = "Neck" in affected_areas
|
||||
keep_hair = "Hair" in affected_areas
|
||||
keep_hat = "Hat" in affected_areas
|
||||
|
||||
mask = np.zeros((face.shape[0], face.shape[1], 3), dtype=np.uint8)
|
||||
num_of_class = np.max(face)
|
||||
for i in range(1, num_of_class + 1):
|
||||
index = np.where(face == i)
|
||||
if i < 14 and keep_face:
|
||||
mask[index[0], index[1], :] = [255, 255, 255]
|
||||
elif i == 14 and keep_neck:
|
||||
mask[index[0], index[1], :] = [255, 255, 255]
|
||||
elif i == 17 and keep_hair:
|
||||
mask[index[0], index[1], :] = [255, 255, 255]
|
||||
elif i == 18 and keep_hat:
|
||||
mask[index[0], index[1], :] = [255, 255, 255]
|
||||
return mask
|
||||
37
scripts/inferencers/mask_generator.py
Normal file
37
scripts/inferencers/mask_generator.py
Normal file
@ -0,0 +1,37 @@
|
||||
from abc import ABC, abstractmethod
|
||||
from typing import Tuple
|
||||
|
||||
import cv2
|
||||
import numpy as np
|
||||
|
||||
|
||||
class MaskGenerator(ABC):
|
||||
@abstractmethod
|
||||
def name(self) -> str:
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
def generate_mask(
|
||||
self,
|
||||
face_image: np.ndarray,
|
||||
face_area_on_image: Tuple[int, int, int, int],
|
||||
**kwargs,
|
||||
) -> np.ndarray:
|
||||
pass
|
||||
|
||||
@staticmethod
|
||||
def mask_non_face_areas(image: np.ndarray, face_area_on_image: Tuple[int, int, int, int]) -> np.ndarray:
|
||||
left, top, right, bottom = face_area_on_image
|
||||
image = image.copy()
|
||||
image[:top, :] = 0
|
||||
image[bottom:, :] = 0
|
||||
image[:, :left] = 0
|
||||
image[:, right:] = 0
|
||||
return image
|
||||
|
||||
@staticmethod
|
||||
def calculate_mask_coverage(mask: np.ndarray):
|
||||
gray_mask = cv2.cvtColor(mask, cv2.COLOR_RGB2GRAY)
|
||||
non_black_pixels = np.count_nonzero(gray_mask)
|
||||
total_pixels = gray_mask.size
|
||||
return non_black_pixels / total_pixels
|
||||
@ -66,6 +66,8 @@ class FaceSwapScript(scripts.Script):
|
||||
img = gr.Image(type="pil")
|
||||
enable = gr.Checkbox(False, label="Enable", info=f"The Fast and Simple FaceSwap Extension - {version_flag}")
|
||||
save_original = gr.Checkbox(False, label="Save Original", info="Save the original image(s) made before swapping; If you use \"img2img\" - this option will affect with \"Swap in generated\" only")
|
||||
mask_face = gr.Checkbox(False, label="Mask Faces", info="Attempt to mask only the faces and eliminate pixelation of the image around the contours.")
|
||||
|
||||
gr.Markdown("<br>")
|
||||
gr.Markdown("Source Image (above):")
|
||||
with gr.Row():
|
||||
@ -211,6 +213,7 @@ class FaceSwapScript(scripts.Script):
|
||||
source_hash_check,
|
||||
target_hash_check,
|
||||
device,
|
||||
mask_face
|
||||
]
|
||||
|
||||
|
||||
@ -264,6 +267,7 @@ class FaceSwapScript(scripts.Script):
|
||||
source_hash_check,
|
||||
target_hash_check,
|
||||
device,
|
||||
mask_face
|
||||
):
|
||||
self.enable = enable
|
||||
if self.enable:
|
||||
@ -291,6 +295,7 @@ class FaceSwapScript(scripts.Script):
|
||||
self.source_hash_check = source_hash_check
|
||||
self.target_hash_check = target_hash_check
|
||||
self.device = device
|
||||
self.mask_face = mask_face
|
||||
if self.gender_source is None or self.gender_source == "No":
|
||||
self.gender_source = 0
|
||||
if self.gender_target is None or self.gender_target == "No":
|
||||
@ -334,6 +339,7 @@ class FaceSwapScript(scripts.Script):
|
||||
source_hash_check=self.source_hash_check,
|
||||
target_hash_check=self.target_hash_check,
|
||||
device=self.device,
|
||||
mask_face=mask_face
|
||||
)
|
||||
p.init_images[i] = result
|
||||
# result_path = get_image_path(p.init_images[i], p.outpath_samples, "", p.all_seeds[i], p.all_prompts[i], "txt", p=p, suffix="-swapped")
|
||||
@ -385,6 +391,7 @@ class FaceSwapScript(scripts.Script):
|
||||
source_hash_check=self.source_hash_check,
|
||||
target_hash_check=self.target_hash_check,
|
||||
device=self.device,
|
||||
mask_face=self.mask_face
|
||||
)
|
||||
if result is not None and swapped > 0:
|
||||
result_images.append(result)
|
||||
@ -442,6 +449,7 @@ class FaceSwapScript(scripts.Script):
|
||||
source_hash_check=self.source_hash_check,
|
||||
target_hash_check=self.target_hash_check,
|
||||
device=self.device,
|
||||
mask_face=self.mask_face
|
||||
)
|
||||
try:
|
||||
pp = scripts_postprocessing.PostprocessedImage(result)
|
||||
@ -468,6 +476,8 @@ class FaceSwapScriptExtras(scripts_postprocessing.ScriptPostprocessing):
|
||||
with gr.Column():
|
||||
img = gr.Image(type="pil")
|
||||
enable = gr.Checkbox(False, label="Enable", info=f"The Fast and Simple FaceSwap Extension - {version_flag}")
|
||||
mask_face = gr.Checkbox(False, label="Mask Faces", info="Attempt to mask only the faces and eliminate pixelation of the image around the contours.")
|
||||
|
||||
gr.Markdown("Source Image (above):")
|
||||
with gr.Row():
|
||||
source_faces_index = gr.Textbox(
|
||||
@ -582,6 +592,7 @@ class FaceSwapScriptExtras(scripts_postprocessing.ScriptPostprocessing):
|
||||
'gender_target': gender_target,
|
||||
'codeformer_weight': codeformer_weight,
|
||||
'device': device,
|
||||
'mask_face':mask_face
|
||||
}
|
||||
return args
|
||||
|
||||
@ -631,6 +642,7 @@ class FaceSwapScriptExtras(scripts_postprocessing.ScriptPostprocessing):
|
||||
self.gender_target = args['gender_target']
|
||||
self.codeformer_weight = args['codeformer_weight']
|
||||
self.device = args['device']
|
||||
self.mask_face = args['mask_face']
|
||||
if self.gender_source is None or self.gender_source == "No":
|
||||
self.gender_source = 0
|
||||
if self.gender_target is None or self.gender_target == "No":
|
||||
@ -669,6 +681,7 @@ class FaceSwapScriptExtras(scripts_postprocessing.ScriptPostprocessing):
|
||||
source_hash_check=True,
|
||||
target_hash_check=True,
|
||||
device=self.device,
|
||||
mask_face=self.mask_face
|
||||
)
|
||||
try:
|
||||
pp.info["ReActor"] = True
|
||||
|
||||
@ -5,10 +5,13 @@ from typing import List, Union
|
||||
|
||||
import cv2
|
||||
import numpy as np
|
||||
from PIL import Image
|
||||
|
||||
from numpy import uint8
|
||||
from PIL import Image, ImageDraw
|
||||
from scripts.inferencers.bisenet_mask_generator import BiSeNetMaskGenerator
|
||||
from scripts.entities.face import Face
|
||||
from scripts.entities.rect import Rect
|
||||
import insightface
|
||||
|
||||
from torchvision.transforms.functional import to_pil_image
|
||||
from scripts.reactor_helpers import get_image_md5hash, get_Device
|
||||
from modules.face_restoration import FaceRestoration
|
||||
try: # A1111
|
||||
@ -18,6 +21,7 @@ except: # SD.Next
|
||||
from modules.upscaler import UpscalerData
|
||||
from modules.shared import state
|
||||
from scripts.reactor_logger import logger
|
||||
|
||||
try:
|
||||
from modules.paths_internal import models_path
|
||||
except:
|
||||
@ -76,8 +80,9 @@ def check_process_halt(msgforced: bool = False):
|
||||
|
||||
|
||||
FS_MODEL = None
|
||||
MASK_MODEL = None
|
||||
CURRENT_FS_MODEL_PATH = None
|
||||
|
||||
CURRENT_MASK_MODEL_PATH = None
|
||||
ANALYSIS_MODEL = None
|
||||
|
||||
SOURCE_FACES = None
|
||||
@ -105,6 +110,8 @@ def getFaceSwapModel(model_path: str):
|
||||
return FS_MODEL
|
||||
|
||||
|
||||
|
||||
|
||||
def restore_face(image: Image, enhancement_options: EnhancementOptions):
|
||||
result_image = image
|
||||
|
||||
@ -168,7 +175,28 @@ def enhance_image(image: Image, enhancement_options: EnhancementOptions):
|
||||
result_image = restore_face(result_image, enhancement_options)
|
||||
|
||||
return result_image
|
||||
def enhance_image_and_mask(image: Image.Image, enhancement_options: EnhancementOptions,target_img_orig:Image.Image,entire_mask_image:Image.Image)->Image.Image:
|
||||
result_image = image
|
||||
|
||||
if check_process_halt(msgforced=True):
|
||||
return result_image
|
||||
|
||||
if enhancement_options.do_restore_first:
|
||||
|
||||
result_image = restore_face(result_image, enhancement_options)
|
||||
result_image = Image.composite(result_image,target_img_orig,entire_mask_image)
|
||||
result_image = upscale_image(result_image, enhancement_options)
|
||||
|
||||
else:
|
||||
|
||||
result_image = upscale_image(result_image, enhancement_options)
|
||||
entire_mask_image = Image.fromarray(cv2.resize(np.array(entire_mask_image),result_image.size, interpolation=cv2.INTER_AREA)).convert("L")
|
||||
result_image = Image.composite(result_image,target_img_orig,entire_mask_image)
|
||||
result_image = restore_face(result_image, enhancement_options)
|
||||
|
||||
return result_image
|
||||
|
||||
|
||||
def get_gender(face, face_index):
|
||||
gender = [
|
||||
x.sex
|
||||
@ -282,6 +310,7 @@ def swap_face(
|
||||
source_hash_check: bool = True,
|
||||
target_hash_check: bool = False,
|
||||
device: str = "CPU",
|
||||
mask_face:bool = False
|
||||
):
|
||||
global SOURCE_FACES, SOURCE_IMAGE_HASH, TARGET_FACES, TARGET_IMAGE_HASH, PROVIDERS
|
||||
result_image = target_img
|
||||
@ -308,7 +337,8 @@ def swap_face(
|
||||
|
||||
source_img = cv2.cvtColor(np.array(source_img), cv2.COLOR_RGB2BGR)
|
||||
target_img = cv2.cvtColor(np.array(target_img), cv2.COLOR_RGB2BGR)
|
||||
|
||||
target_img_orig = cv2.cvtColor(np.array(target_img), cv2.COLOR_RGB2BGR)
|
||||
entire_mask_image = np.zeros_like(np.array(target_img))
|
||||
output: List = []
|
||||
output_info: str = ""
|
||||
swapped = 0
|
||||
@ -411,7 +441,12 @@ def swap_face(
|
||||
|
||||
if target_face is not None and wrong_gender == 0:
|
||||
logger.status("Swapping Source into Target")
|
||||
result = face_swapper.get(result, target_face, source_face)
|
||||
swapped_image = face_swapper.get(result, target_face, source_face)
|
||||
|
||||
if mask_face:
|
||||
result = apply_face_mask(swapped_image=swapped_image,target_image=result,target_face=target_face,entire_mask_image=entire_mask_image)
|
||||
else:
|
||||
result = swapped_image
|
||||
swapped += 1
|
||||
|
||||
elif wrong_gender == 1:
|
||||
@ -445,11 +480,173 @@ def swap_face(
|
||||
result_image = Image.fromarray(cv2.cvtColor(result, cv2.COLOR_BGR2RGB))
|
||||
|
||||
if enhancement_options is not None and swapped > 0:
|
||||
result_image = enhance_image(result_image, enhancement_options)
|
||||
|
||||
if mask_face and entire_mask_image is not None:
|
||||
result_image = enhance_image_and_mask(result_image, enhancement_options,Image.fromarray(target_img_orig),Image.fromarray(entire_mask_image).convert("L"))
|
||||
else:
|
||||
result_image = enhance_image(result_image, enhancement_options)
|
||||
elif mask_face and entire_mask_image is not None and swapped > 0:
|
||||
result_image = Image.composite(result_image,Image.fromarray(target_img_orig),Image.fromarray(entire_mask_image).convert("L"))
|
||||
|
||||
else:
|
||||
logger.status("No source face(s) in the provided Index")
|
||||
else:
|
||||
logger.status("No source face(s) found")
|
||||
|
||||
return result_image, output, swapped
|
||||
|
||||
|
||||
|
||||
def apply_face_mask(swapped_image:np.ndarray,target_image:np.ndarray,target_face,entire_mask_image:np.array)->np.ndarray:
|
||||
logger.status("Masking Face")
|
||||
mask_generator = BiSeNetMaskGenerator()
|
||||
face = Face(target_image,Rect.from_ndarray(np.array(target_face.bbox)),1.6,512,"")
|
||||
face_image = np.array(face.image)
|
||||
process_face_image(face)
|
||||
face_area_on_image = face.face_area_on_image
|
||||
mask = mask_generator.generate_mask(face_image,face_area_on_image=face_area_on_image,affected_areas=["Face"],mask_size=0,use_minimal_area=True)
|
||||
mask = cv2.blur(mask, (12, 12))
|
||||
"""entire_mask_image = np.zeros_like(target_image)"""
|
||||
larger_mask = cv2.resize(mask, dsize=(face.width, face.height))
|
||||
entire_mask_image[
|
||||
face.top : face.bottom,
|
||||
face.left : face.right,
|
||||
] = larger_mask
|
||||
|
||||
|
||||
result = Image.composite(Image.fromarray(swapped_image),Image.fromarray(target_image), Image.fromarray(entire_mask_image).convert("L"))
|
||||
return np.array(result)
|
||||
|
||||
|
||||
def correct_face_tilt(angle: float) -> bool:
|
||||
|
||||
angle = abs(angle)
|
||||
if angle > 180:
|
||||
angle = 360 - angle
|
||||
return angle > 40
|
||||
def _dilate(arr: np.ndarray, value: int) -> np.ndarray:
|
||||
kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (value, value))
|
||||
return cv2.dilate(arr, kernel, iterations=1)
|
||||
|
||||
|
||||
def _erode(arr: np.ndarray, value: int) -> np.ndarray:
|
||||
kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (value, value))
|
||||
return cv2.erode(arr, kernel, iterations=1)
|
||||
colors = [
|
||||
(255, 0, 0),
|
||||
(0, 255, 0),
|
||||
(0, 0, 255),
|
||||
(255, 255, 0),
|
||||
(255, 0, 255),
|
||||
(0, 255, 255),
|
||||
(255, 255, 255),
|
||||
(128, 0, 0),
|
||||
(0, 128, 0),
|
||||
(128, 128, 0),
|
||||
(0, 0, 128),
|
||||
(0, 128, 128),
|
||||
]
|
||||
|
||||
|
||||
def color_generator(colors):
|
||||
while True:
|
||||
for color in colors:
|
||||
yield color
|
||||
|
||||
|
||||
color_iter = color_generator(colors)
|
||||
def process_face_image(
|
||||
face: Face,
|
||||
**kwargs,
|
||||
) -> Image:
|
||||
image = np.array(face.image)
|
||||
overlay = image.copy()
|
||||
cv2.rectangle(overlay, (0, 0), (image.shape[1], image.shape[0]), next(color_iter), -1)
|
||||
l, t, r, b = face.face_area_on_image
|
||||
cv2.rectangle(overlay, (l, t), (r, b), (0, 0, 0), 10)
|
||||
if face.landmarks_on_image is not None:
|
||||
for landmark in face.landmarks_on_image:
|
||||
cv2.circle(overlay, (int(landmark.x), int(landmark.y)), 6, (0, 0, 0), 10)
|
||||
alpha = 0.3
|
||||
output = cv2.addWeighted(image, 1 - alpha, overlay, alpha, 0)
|
||||
|
||||
return Image.fromarray(output)
|
||||
def dilate_erode(img: Image.Image, value: int) -> Image.Image:
|
||||
"""
|
||||
The dilate_erode function takes an image and a value.
|
||||
If the value is positive, it dilates the image by that amount.
|
||||
If the value is negative, it erodes the image by that amount.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
img: PIL.Image.Image
|
||||
the image to be processed
|
||||
value: int
|
||||
kernel size of dilation or erosion
|
||||
|
||||
Returns
|
||||
-------
|
||||
PIL.Image.Image
|
||||
The image that has been dilated or eroded
|
||||
"""
|
||||
if value == 0:
|
||||
return img
|
||||
|
||||
arr = np.array(img)
|
||||
arr = _dilate(arr, value) if value > 0 else _erode(arr, -value)
|
||||
|
||||
return Image.fromarray(arr)
|
||||
|
||||
def mask_to_pil(masks, shape: tuple[int, int]) -> list[Image.Image]:
|
||||
"""
|
||||
Parameters
|
||||
----------
|
||||
masks: torch.Tensor, dtype=torch.float32, shape=(N, H, W).
|
||||
The device can be CUDA, but `to_pil_image` takes care of that.
|
||||
|
||||
shape: tuple[int, int]
|
||||
(width, height) of the original image
|
||||
"""
|
||||
n = masks.shape[0]
|
||||
return [to_pil_image(masks[i], mode="L").resize(shape) for i in range(n)]
|
||||
|
||||
def create_mask_from_bbox(
|
||||
bboxes: list[list[float]], shape: tuple[int, int]
|
||||
) -> list[Image.Image]:
|
||||
"""
|
||||
Parameters
|
||||
----------
|
||||
bboxes: list[list[float]]
|
||||
list of [x1, y1, x2, y2]
|
||||
bounding boxes
|
||||
shape: tuple[int, int]
|
||||
shape of the image (width, height)
|
||||
|
||||
Returns
|
||||
-------
|
||||
masks: list[Image.Image]
|
||||
A list of masks
|
||||
|
||||
"""
|
||||
masks = []
|
||||
for bbox in bboxes:
|
||||
mask = Image.new("L", shape, 0)
|
||||
mask_draw = ImageDraw.Draw(mask)
|
||||
mask_draw.rectangle(bbox, fill=255)
|
||||
masks.append(mask)
|
||||
return masks
|
||||
|
||||
def rotate_image(image: Image, angle: float) -> Image:
|
||||
if angle == 0:
|
||||
return image
|
||||
return Image.fromarray(rotate_array(np.array(image), angle))
|
||||
|
||||
|
||||
def rotate_array(image: np.ndarray, angle: float) -> np.ndarray:
|
||||
if angle == 0:
|
||||
return image
|
||||
|
||||
h, w = image.shape[:2]
|
||||
center = (w // 2, h // 2)
|
||||
|
||||
M = cv2.getRotationMatrix2D(center, angle, 1.0)
|
||||
return cv2.warpAffine(image, M, (w, h))
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user