2023-06-19 14:20:42 +07:00

125 lines
3.8 KiB
Python

import copy
import math
import os
import tempfile
from dataclasses import dataclass
from typing import List, Union, Dict, Set, Tuple
import cv2
import numpy as np
from PIL import Image
import insightface
import onnxruntime
from scripts.cimage import convert_to_sd
from modules.face_restoration import FaceRestoration, restore_faces
from scripts.roop_logging import logger
providers = onnxruntime.get_available_providers()
def save_image(img: Image, filename: str):
convert_to_sd(img).save(filename)
def cosine_distance(vector1: np.ndarray, vector2: np.ndarray) -> float:
vec1 = vector1.flatten()
vec2 = vector2.flatten()
dot_product = np.dot(vec1, vec2)
norm1 = np.linalg.norm(vec1)
norm2 = np.linalg.norm(vec2)
cosine_distance = 1 - (dot_product / (norm1 * norm2))
return cosine_distance
def cosine_similarity(test_vec: np.ndarray, source_vecs: List[np.ndarray]) -> float:
cos_dist = sum(cosine_distance(test_vec, source_vec) for source_vec in source_vecs)
average_cos_dist = cos_dist / len(source_vecs)
return average_cos_dist
ANALYSIS_MODEL = None
def getAnalysisModel():
global ANALYSIS_MODEL
if ANALYSIS_MODEL is None:
ANALYSIS_MODEL = insightface.app.FaceAnalysis(
name="buffalo_l", providers=providers
)
return ANALYSIS_MODEL
FS_MODEL = None
CURRENT_FS_MODEL_PATH = None
def getFaceSwapModel(model_path: str):
global FS_MODEL
global CURRENT_FS_MODEL_PATH
if CURRENT_FS_MODEL_PATH is None or CURRENT_FS_MODEL_PATH != model_path:
CURRENT_FS_MODEL_PATH = model_path
FS_MODEL = insightface.model_zoo.get_model(model_path, providers=providers)
return FS_MODEL
def get_face_single(img_data: np.ndarray, face_index=0, det_size=(640, 640)):
face_analyser = copy.deepcopy(getAnalysisModel())
face_analyser.prepare(ctx_id=0, det_size=det_size)
face = face_analyser.get(img_data)
if len(face) == 0 and det_size[0] > 320 and det_size[1] > 320:
det_size_half = (det_size[0] // 2, det_size[1] // 2)
return get_face_single(img_data, face_index=face_index, det_size=det_size_half)
try:
return sorted(face, key=lambda x: x.bbox[0])[face_index]
except IndexError:
return None
@dataclass
class ImageResult:
path: Union[str, None] = None
similarity: Union[Dict[int, float], None] = None # face, 0..1
def image(self) -> Union[Image.Image, None]:
if self.path:
return Image.open(self.path)
return None
def swap_face(
source_img: Image.Image,
target_img: Image.Image,
model: Union[str, None] = None,
faces_index: Set[int] = {0},
) -> ImageResult:
fn = tempfile.NamedTemporaryFile(delete=False, suffix=".png")
if model is not None:
source_img = cv2.cvtColor(np.array(source_img), cv2.COLOR_RGB2BGR)
target_img = cv2.cvtColor(np.array(target_img), cv2.COLOR_RGB2BGR)
source_face = get_face_single(source_img, face_index=0)
if source_face is not None:
result = target_img
model_path = os.path.join(os.path.abspath(os.path.dirname(__file__)), model)
face_swapper = getFaceSwapModel(model_path)
for face_num in faces_index:
target_face = get_face_single(target_img, face_index=face_num)
if target_face is not None:
result = face_swapper.get(result, target_face, source_face)
else:
logger.info(f"No target face found for {face_num}")
result_image = Image.fromarray(cv2.cvtColor(result, cv2.COLOR_BGR2RGB))
save_image(result_image, fn.name)
else:
logger.info("No source face found")
return ImageResult(path=fn.name)