200 lines
7.6 KiB
Python
200 lines
7.6 KiB
Python
import copy
|
|
import os
|
|
from dataclasses import dataclass
|
|
from typing import List, Union
|
|
|
|
import cv2
|
|
import numpy as np
|
|
from PIL import Image
|
|
|
|
import insightface
|
|
import onnxruntime
|
|
|
|
from modules.face_restoration import FaceRestoration
|
|
from modules.upscaler import UpscalerData
|
|
from scripts.roop_logging import logger
|
|
|
|
|
|
providers = onnxruntime.get_available_providers()
|
|
|
|
|
|
@dataclass
|
|
class UpscaleOptions:
|
|
do_restore_first: bool = True
|
|
scale: int = 1
|
|
upscaler: UpscalerData = None
|
|
upscale_visibility: float = 0.5
|
|
face_restorer: FaceRestoration = None
|
|
restorer_visibility: float = 0.5
|
|
|
|
|
|
def cosine_distance(vector1: np.ndarray, vector2: np.ndarray) -> float:
|
|
vec1 = vector1.flatten()
|
|
vec2 = vector2.flatten()
|
|
|
|
dot_product = np.dot(vec1, vec2)
|
|
norm1 = np.linalg.norm(vec1)
|
|
norm2 = np.linalg.norm(vec2)
|
|
|
|
cosine_distance = 1 - (dot_product / (norm1 * norm2))
|
|
return cosine_distance
|
|
|
|
|
|
def cosine_similarity(test_vec: np.ndarray, source_vecs: List[np.ndarray]) -> float:
|
|
cos_dist = sum(cosine_distance(test_vec, source_vec) for source_vec in source_vecs)
|
|
average_cos_dist = cos_dist / len(source_vecs)
|
|
return average_cos_dist
|
|
|
|
|
|
FS_MODEL = None
|
|
CURRENT_FS_MODEL_PATH = None
|
|
|
|
ANALYSIS_MODEL = None
|
|
|
|
|
|
def getAnalysisModel():
|
|
global ANALYSIS_MODEL
|
|
if ANALYSIS_MODEL is None:
|
|
ANALYSIS_MODEL = insightface.app.FaceAnalysis(
|
|
name="buffalo_l", providers=providers
|
|
)
|
|
return ANALYSIS_MODEL
|
|
|
|
|
|
def getFaceSwapModel(model_path: str):
|
|
global FS_MODEL
|
|
global CURRENT_FS_MODEL_PATH
|
|
if CURRENT_FS_MODEL_PATH is None or CURRENT_FS_MODEL_PATH != model_path:
|
|
CURRENT_FS_MODEL_PATH = model_path
|
|
FS_MODEL = insightface.model_zoo.get_model(model_path, providers=providers)
|
|
|
|
return FS_MODEL
|
|
|
|
|
|
def upscale_image(image: Image, upscale_options: UpscaleOptions):
|
|
result_image = image
|
|
if upscale_options.do_restore_first:
|
|
if upscale_options.face_restorer is not None:
|
|
original_image = result_image.copy()
|
|
logger.info("Restore face with %s", upscale_options.face_restorer.name())
|
|
numpy_image = np.array(result_image)
|
|
numpy_image = upscale_options.face_restorer.restore(numpy_image)
|
|
restored_image = Image.fromarray(numpy_image)
|
|
result_image = Image.blend(
|
|
original_image, restored_image, upscale_options.restorer_visibility
|
|
)
|
|
if upscale_options.upscaler is not None and upscale_options.upscaler.name != "None":
|
|
original_image = result_image.copy()
|
|
logger.info(
|
|
"Upscale with %s scale = %s",
|
|
upscale_options.upscaler.name,
|
|
upscale_options.scale,
|
|
)
|
|
result_image = upscale_options.upscaler.scaler.upscale(
|
|
original_image, upscale_options.scale, upscale_options.upscaler.data_path
|
|
)
|
|
if upscale_options.scale == 1:
|
|
result_image = Image.blend(
|
|
original_image, result_image, upscale_options.upscale_visibility
|
|
)
|
|
else:
|
|
if upscale_options.upscaler is not None and upscale_options.upscaler.name != "None":
|
|
original_image = result_image.copy()
|
|
logger.info(
|
|
"Upscale with %s scale = %s",
|
|
upscale_options.upscaler.name,
|
|
upscale_options.scale,
|
|
)
|
|
result_image = upscale_options.upscaler.scaler.upscale(
|
|
image, upscale_options.scale, upscale_options.upscaler.data_path
|
|
)
|
|
if upscale_options.scale == 1:
|
|
result_image = Image.blend(
|
|
original_image, result_image, upscale_options.upscale_visibility
|
|
)
|
|
if upscale_options.face_restorer is not None:
|
|
original_image = result_image.copy()
|
|
logger.info("Restore face with %s", upscale_options.face_restorer.name())
|
|
numpy_image = np.array(result_image)
|
|
numpy_image = upscale_options.face_restorer.restore(numpy_image)
|
|
restored_image = Image.fromarray(numpy_image)
|
|
result_image = Image.blend(
|
|
original_image, restored_image, upscale_options.restorer_visibility
|
|
)
|
|
|
|
return result_image
|
|
|
|
|
|
def get_face_single(img_data: np.ndarray, face_index=0, det_size=(640, 640)):
|
|
face_analyser = copy.deepcopy(getAnalysisModel())
|
|
face_analyser.prepare(ctx_id=0, det_size=det_size)
|
|
face = face_analyser.get(img_data)
|
|
|
|
if len(face) == 0 and det_size[0] > 320 and det_size[1] > 320:
|
|
det_size_half = (det_size[0] // 2, det_size[1] // 2)
|
|
return get_face_single(img_data, face_index=face_index, det_size=det_size_half)
|
|
|
|
try:
|
|
return sorted(face, key=lambda x: x.bbox[0])[face_index]
|
|
except IndexError:
|
|
return None
|
|
|
|
|
|
def swap_face(
|
|
source_img: Image.Image,
|
|
target_img: Image.Image,
|
|
model: Union[str, None] = None,
|
|
source_faces_index: List[int] = [0],
|
|
faces_index: List[int] = [0],
|
|
upscale_options: Union[UpscaleOptions, None] = None,
|
|
):
|
|
result_image = target_img
|
|
if model is not None:
|
|
|
|
if isinstance(source_img, str): # source_img is a base64 string
|
|
import base64, io
|
|
if 'base64,' in source_img: # check if the base64 string has a data URL scheme
|
|
# split the base64 string to get the actual base64 encoded image data
|
|
base64_data = source_img.split('base64,')[-1]
|
|
# decode base64 string to bytes
|
|
img_bytes = base64.b64decode(base64_data)
|
|
else:
|
|
# if no data URL scheme, just decode
|
|
img_bytes = base64.b64decode(source_img)
|
|
|
|
source_img = Image.open(io.BytesIO(img_bytes))
|
|
|
|
source_img = cv2.cvtColor(np.array(source_img), cv2.COLOR_RGB2BGR)
|
|
target_img = cv2.cvtColor(np.array(target_img), cv2.COLOR_RGB2BGR)
|
|
source_face = get_face_single(source_img, face_index=source_faces_index[0])
|
|
if len(source_faces_index) != 0 and len(source_faces_index) != 1 and len(source_faces_index) != len(faces_index):
|
|
logger.info(f'Source Faces must have no entries (default=0), one entry, or same number of entries as target faces.')
|
|
elif source_face is not None:
|
|
result = target_img
|
|
model_path = os.path.join(os.path.abspath(os.path.dirname(__file__)), model)
|
|
face_swapper = getFaceSwapModel(model_path)
|
|
|
|
source_face_idx = 0
|
|
|
|
for face_num in faces_index:
|
|
if len(source_faces_index) > 1 and source_face_idx > 0:
|
|
source_face = get_face_single(source_img, face_index=source_faces_index[source_face_idx])
|
|
source_face_idx += 1
|
|
|
|
if source_face is not None:
|
|
target_face = get_face_single(target_img, face_index=face_num)
|
|
if target_face is not None:
|
|
result = face_swapper.get(result, target_face, source_face)
|
|
else:
|
|
logger.info(f"No target face found for {face_num}")
|
|
else:
|
|
logger.info(f"No source face found for face number {source_face_idx}.")
|
|
|
|
result_image = Image.fromarray(cv2.cvtColor(result, cv2.COLOR_BGR2RGB))
|
|
if upscale_options is not None:
|
|
result_image = upscale_image(result_image, upscale_options)
|
|
|
|
else:
|
|
logger.info("No source face(s) found")
|
|
return result_image
|