109 lines
4.4 KiB
Python
109 lines
4.4 KiB
Python
import base64, io, requests, json
|
|
from PIL import Image, PngImagePlugin
|
|
from datetime import datetime, date
|
|
|
|
address = 'http://127.0.0.1:7860'
|
|
input_file = "extensions\sd-webui-reactor\example\IamSFW.jpg" # Input file path
|
|
time = datetime.now()
|
|
today = date.today()
|
|
current_date = today.strftime('%Y-%m-%d')
|
|
current_time = time.strftime('%H-%M-%S')
|
|
output = 'outputs/api/output_'+current_date+'_'+current_time # Output file path + name index
|
|
try:
|
|
im = Image.open(input_file)
|
|
except Exception as e:
|
|
print(e)
|
|
finally:
|
|
print(im)
|
|
|
|
img_bytes = io.BytesIO()
|
|
im.save(img_bytes, format='PNG')
|
|
img_base64 = base64.b64encode(img_bytes.getvalue()).decode('utf-8')
|
|
|
|
# ReActor arguments:
|
|
args=[
|
|
img_base64, #0
|
|
True, #1 Enable ReActor
|
|
'0', #2 Comma separated face number(s) from swap-source image
|
|
'0', #3 Comma separated face number(s) for target image (result)
|
|
'C:\stable-diffusion-webui\models\insightface\inswapper_128.onnx', #4 model path
|
|
'CodeFormer', #4 Restore Face: None; CodeFormer; GFPGAN
|
|
1, #5 Restore visibility value
|
|
True, #7 Restore face -> Upscale
|
|
'4x_NMKD-Superscale-SP_178000_G', #8 Upscaler (type 'None' if doesn't need), see full list here: http://127.0.0.1:7860/sdapi/v1/script-info -> reactor -> sec.8
|
|
1.5, #9 Upscaler scale value
|
|
1, #10 Upscaler visibility (if scale = 1)
|
|
False, #11 Swap in source image
|
|
True, #12 Swap in generated image
|
|
1, #13 Console Log Level (0 - min, 1 - med or 2 - max)
|
|
0, #14 Gender Detection (Source) (0 - No, 1 - Female Only, 2 - Male Only)
|
|
0, #15 Gender Detection (Target) (0 - No, 1 - Female Only, 2 - Male Only)
|
|
False, #16 Save the original image(s) made before swapping
|
|
0.8, #17 CodeFormer Weight (0 = maximum effect, 1 = minimum effect), 0.5 - by default
|
|
False, #18 Source Image Hash Check, True - by default
|
|
False, #19 Target Image Hash Check, False - by default
|
|
"CUDA", #20 CPU or CUDA (if you have it), CPU - by default
|
|
True, #21 Face Mask Correction
|
|
1, #22 Select Source, 0 - Image, 1 - Face Model, 2 - Source Folder
|
|
"elena.safetensors", #23 Filename of the face model (from "models/reactor/faces"), e.g. elena.safetensors, don't forger to set #22 to 1
|
|
"C:\PATH_TO_FACES_IMAGES", #24 The path to the folder containing source faces images, don't forger to set #22 to 2
|
|
None, #25 skip it for API
|
|
True, #26 Randomly select an image from the path
|
|
True, #27 Force Upscale even if no face found
|
|
0.6, #28 Face Detection Threshold
|
|
2, #29 Maximum number of faces to detect (0 is unlimited)
|
|
]
|
|
|
|
# The args for ReActor can be found by
|
|
# requests.get(url=f'{address}/sdapi/v1/script-info')
|
|
|
|
prompt = "(8k, best quality, masterpiece, highly detailed:1.1),realistic photo of fantastic happy woman,hairstyle of blonde and red short bob hair,modern clothing,cinematic lightning,film grain,dynamic pose,bokeh,dof"
|
|
|
|
neg = "ng_deepnegative_v1_75t,(badhandv4:1.2),(worst quality:2),(low quality:2),(normal quality:2),lowres,(bad anatomy),(bad hands),((monochrome)),((grayscale)),(verybadimagenegative_v1.3:0.8),negative_hand-neg,badhandv4,nude,naked,(strabismus),cross-eye,heterochromia,((blurred))"
|
|
|
|
payload = {
|
|
"prompt": prompt,
|
|
"negative_prompt": neg,
|
|
"seed": -1,
|
|
"sampler_name": "DPM++ 2M Karras",
|
|
"steps": 15,
|
|
"cfg_scale": 7,
|
|
"width": 512,
|
|
"height": 768,
|
|
"restore_faces": False,
|
|
"alwayson_scripts": {"reactor":{"args":args}}
|
|
}
|
|
|
|
try:
|
|
print('Working... Please wait...')
|
|
result = requests.post(url=f'{address}/sdapi/v1/txt2img', json=payload)
|
|
except Exception as e:
|
|
print(e)
|
|
finally:
|
|
print('Done! Saving file...')
|
|
|
|
if result is not None:
|
|
r = result.json()
|
|
n = 0
|
|
|
|
for i in r['images']:
|
|
image = Image.open(io.BytesIO(base64.b64decode(i.split(",",1)[0])))
|
|
|
|
png_payload = {
|
|
"image": "data:image/png;base64," + i
|
|
}
|
|
response2 = requests.post(url=f'{address}/sdapi/v1/png-info', json=png_payload)
|
|
|
|
pnginfo = PngImagePlugin.PngInfo()
|
|
pnginfo.add_text("parameters", response2.json().get("info"))
|
|
output_file = output+'_'+str(n)+'_.png'
|
|
try:
|
|
image.save(output_file, pnginfo=pnginfo)
|
|
except Exception as e:
|
|
print(e)
|
|
finally:
|
|
print(f'{output_file} is saved\nAll is done!')
|
|
n += 1
|
|
else:
|
|
print('Something went wrong...')
|