from typing import List, Union, Dict, Set, Tuple from transformers import AutoFeatureExtractor import torch from PIL import Image, ImageFilter import numpy as np def numpy_to_pil(images: np.ndarray) -> List[Image.Image]: if images.ndim == 3: images = images[None, ...] images = (images * 255).round().astype("uint8") pil_images = [Image.fromarray(image) for image in images] return pil_images def check_image(x_image: np.ndarray) -> Tuple[np.ndarray, List[bool]]: global safety_feature_extractor, safety_checker return x_image, False def check_batch(x: torch.Tensor) -> torch.Tensor: x_samples_ddim_numpy = x.cpu().permute(0, 2, 3, 1).numpy() x_checked_image = x_samples_ddim_numpy x = torch.from_numpy(x_checked_image).permute(0, 3, 1, 2) return x def convert_to_sd(img: Image) -> Image: return img