Compare commits
No commits in common. "main" and "v0.5.1" have entirely different histories.
36
API.md
36
API.md
@ -40,7 +40,7 @@ curl -X POST \
|
||||
"target_image": "...",
|
||||
"source_faces_index": [0],
|
||||
"face_index": [0],
|
||||
"upscaler": "4x_NMKD-Siax_200k",
|
||||
"upscaler": "4x_Struzan_300000",
|
||||
"scale": 2,
|
||||
"upscale_visibility": 1,
|
||||
"face_restorer": "CodeFormer",
|
||||
@ -50,26 +50,13 @@ curl -X POST \
|
||||
"gender_source": 0,
|
||||
"gender_target": 0,
|
||||
"save_to_file": 0,
|
||||
"result_file_path": "",
|
||||
"device": "CUDA",
|
||||
"mask_face": 1,
|
||||
"select_source": 1,
|
||||
"face_model": "elena.safetensors",
|
||||
"source_folder": "C:/faces",
|
||||
"random_image": 1,
|
||||
"upscale_force": 1
|
||||
"result_file_path": ""
|
||||
}'
|
||||
```
|
||||
|
||||
* Set `"upscaler"` to `"None"` and `"scale"` to `1` if you don't need to upscale;
|
||||
* Set `"save_to_file"` to `1` if you need to save result to a file;
|
||||
* `"result_file_path"` is set to the `"outputs/api"` folder by default (please, create the folder beforehand to avoid any errors) with a timestamped filename; (output_YYYY-MM-DD_hh-mm-ss), you can set any specific path, e.g. `"C:/stable-diffusion-webui/outputs/api/output.png"`;
|
||||
* Set `"mask_face"` to `1` if you want ReActor to mask the face or to `0` if want ReActor to create a bbox around the face;
|
||||
* Set `"select_source"` to: 0 - Image, 1 - Face Model, 2 - Source Folder;
|
||||
* Set `"face_model"` to the face model file you want to choose if you set `"select_source": 1`;
|
||||
* Set `"source_folder"` to the path with source images (with faces you need as the results) if you set `"select_source": 2`;
|
||||
* Set `"random_image"` to `1` if want ReActor to choose a random image from the path of `"source_folder"`;
|
||||
* Set `"upscale_force"` to `1` if you want ReActor to upscale the image even if no face found.
|
||||
* `"result_file_path"` is set to the `"outputs/api"` folder by default (please, create the folder beforehand to avoid any errors) with a timestamped filename; (output_YYYY-MM-DD_hh-mm-ss), you can set any specific path, e.g. `"C:/stable-diffusion-webui/outputs/api/output.png"`.
|
||||
|
||||
You can find full usage examples with all the available parameters in the "example" folder: [cURL](./example/api_external.curl), [JSON](./example/api_external.json).
|
||||
|
||||
@ -82,20 +69,3 @@ As a result you recieve a "base64" image:
|
||||
A list of available models can be seen by GET:
|
||||
* http://127.0.0.1:7860/reactor/models
|
||||
* http://127.0.0.1:7860/reactor/upscalers
|
||||
* http://127.0.0.1:7860/reactor/facemodels
|
||||
|
||||
### FaceModel Buid API
|
||||
|
||||
Send POST to http://127.0.0.1:7860/reactor/facemodels with body:
|
||||
|
||||
```
|
||||
{
|
||||
"source_images": ["...","...","..."],
|
||||
"name": "my_super_model",
|
||||
"compute_method": 0
|
||||
}
|
||||
```
|
||||
|
||||
where:<br>
|
||||
"source_images" is a list of base64 encoded images,<br>
|
||||
"compute_method" is: 0 - Mean, 1- Median, 2 - Mode
|
||||
|
||||
110
README.md
110
README.md
@ -1,8 +1,8 @@
|
||||
<div align="center">
|
||||
|
||||
<img src="https://github.com/Gourieff/Assets/raw/main/sd-webui-reactor/ReActor_logo_NEW_EN.png?raw=true" alt="logo" width="180px"/>
|
||||
<img src="https://github.com/Gourieff/Assets/raw/main/sd-webui-reactor/ReActor_logo_red.png?raw=true" alt="logo" width="180px"/>
|
||||
|
||||

|
||||

|
||||
|
||||
<a href="https://boosty.to/artgourieff" target="_blank">
|
||||
<img src="https://lovemet.ru/www/boosty.jpg" width="108" alt="Support Me on Boosty"/>
|
||||
@ -38,88 +38,20 @@
|
||||
|
||||
<a name="latestupdate">
|
||||
|
||||
## What's new in the latest updates
|
||||
|
||||
### 0.7.1 <sub><sup>BETA1
|
||||
|
||||
- Allow spaces for face indexes (e.g.: 0, 1, 2)
|
||||
- Sorting of face models list alphabetically
|
||||
- [FaceModels Build API](./API.md#facemodel-build-api)
|
||||
- Fixes and improvements
|
||||
|
||||
<details>
|
||||
<summary><a>Click to expand more</a></summary>
|
||||
|
||||
### 0.7.0 <sub><sup>BETA2
|
||||
|
||||
- X/Y/Z is improved! One more parameter is ready: you can now select several face models to create a variation of swaps to choose the best one!
|
||||
|
||||
<img src="https://github.com/Gourieff/Assets/blob/main/sd-webui-reactor/0.7.0-whatsnew-05.jpg?raw=true" alt="0.7.0-whatsnew-05" width="100%"/>
|
||||
|
||||
To use "Face Model" axis - you should enable ReActor and choose any face model as the Source:<br>
|
||||
<img src="https://github.com/Gourieff/Assets/blob/main/sd-webui-reactor/0.7.0-whatsnew-07.jpg?raw=true" alt="0.7.0-whatsnew-07" width="50%"/><img src="https://github.com/Gourieff/Assets/blob/main/sd-webui-reactor/0.7.0-whatsnew-06.jpg?raw=true" alt="0.7.0-whatsnew-06" width="50%"/>
|
||||
|
||||
Full size demo image: [xyz_demo_2.png](https://raw.githubusercontent.com/Gourieff/Assets/main/sd-webui-reactor/xyz_demo_2.png)
|
||||
|
||||
### 0.7.0 <sub><sup>BETA1
|
||||
|
||||
- X/Y/Z Script support (up to 3 axes: CodeFormer Weight, Restorer Visibility, Face Mask Correction)
|
||||
|
||||
<img src="https://github.com/Gourieff/Assets/blob/main/sd-webui-reactor/0.7.0-whatsnew-03.jpg?raw=true" alt="0.7.0-whatsnew-03" width="100%"/>
|
||||
|
||||
<img src="https://github.com/Gourieff/Assets/blob/main/sd-webui-reactor/0.7.0-whatsnew-04.jpg?raw=true" alt="0.7.0-whatsnew-04" width="100%"/>
|
||||
|
||||
Full size demo image: [xyz_demo.png](https://raw.githubusercontent.com/Gourieff/Assets/main/sd-webui-reactor/xyz_demo.png)
|
||||
|
||||
__Don't forget to enable ReActor and set any source (to prevent "no source" error)__
|
||||
|
||||
### 0.7.0 <sub><sup>ALPHA1
|
||||
|
||||
- You can now blend faces to build blended face models ("Tools->Face Models->Blend") - due to popular demand
|
||||
|
||||
<img src="https://github.com/Gourieff/Assets/blob/main/sd-webui-reactor/0.7.0-whatsnew-01.jpg?raw=true" alt="0.7.0-whatsnew-01" width="100%"/><img src="https://github.com/Gourieff/Assets/blob/main/sd-webui-reactor/0.7.0-whatsnew-02.jpg?raw=true" alt="0.7.0-whatsnew-02" width="100%"/>
|
||||
|
||||
- CUDA 12 Support in the Installer script for 1.17.0 ORT-GPU library
|
||||
- New tab "Detection" with "Threshold" and "Max Faces" parameters
|
||||
|
||||
### 0.6.1 <sub><sup>BETA3
|
||||
|
||||
- 'Force Upscale' option inside the 'Upscale' tab: ReActor will run the Upscaler even if there's no face is detected (FR https://github.com/Gourieff/sd-webui-reactor/issues/116)
|
||||
- ReActor shows filenames of source images in-process when the multiple images mode or the folder mode (random as well) is selected
|
||||
|
||||
### 0.6.1 <sub><sup>BETA2
|
||||
|
||||
- 'Save original' option works fine now when you select 'Multiple Images' or 'Source Folder'
|
||||
- Random Mode for 'Source Folder'
|
||||
|
||||
<img src="https://github.com/Gourieff/Assets/blob/main/sd-webui-reactor/random_from_folder_demo_01.jpg?raw=true" alt="0.6.1-whatsnew-01" width="100%"/>
|
||||
|
||||
### 0.6.0
|
||||
|
||||
- New Logo
|
||||
- Adaptation to A1111 1.7.0 (appropriate GFPGAN loader)
|
||||
- New URL for the main model file
|
||||
- UI reworked
|
||||
- You can now load several source images (with reference faces) or set the path to the folder containing faces images
|
||||
|
||||
<img src="https://github.com/Gourieff/Assets/blob/main/sd-webui-reactor/multiple_source_images_demo_01.png?raw=true" alt="0.6.0-whatsnew-01" width="100%"/>
|
||||
|
||||
<img src="https://github.com/Gourieff/Assets/blob/main/sd-webui-reactor/multiple_source_images_demo_02.png?raw=true" alt="0.6.0-whatsnew-02" width="100%"/>
|
||||
## What's new in the latest update
|
||||
|
||||
### 0.5.1
|
||||
|
||||
- You can save face models as "safetensors" files (stored in `<sd-web-ui-folder>\models\reactor\faces`) and load them into ReActor, keeping super lightweight face models of the faces you use;
|
||||
- You can now save face models as "safetensors" files (stored in `<sd-web-ui-folder>\models\reactor\faces`) and load them into ReActor, keeping super lightweight face models of the faces you use;
|
||||
- "Face Mask Correction" option - if you encounter some pixelation around face contours, this option will be useful;
|
||||
|
||||
<img src="https://github.com/Gourieff/Assets/blob/main/sd-webui-reactor/face_model_demo_01.jpg?raw=true" alt="0.5.0-whatsnew-01" width="100%"/>
|
||||
|
||||
</details>
|
||||
|
||||
## Installation
|
||||
|
||||
[A1111 WebUI / WebUI-Forge](#a1111) | [SD.Next](#sdnext) | [Google Colab SD WebUI](#colab)
|
||||
[Automatic1111](#a1111) | [Vladmandic SD.Next](#sdnext) | [Google Colab SD WebUI](#colab)
|
||||
|
||||
<a name="a1111">If you use [AUTOMATIC1111 SD WebUI](https://github.com/AUTOMATIC1111/stable-diffusion-webui/) or [SD WebUI Forge](https://github.com/lllyasviel/stable-diffusion-webui-forge):
|
||||
<a name="a1111">If you use [AUTOMATIC1111 web-ui](https://github.com/AUTOMATIC1111/stable-diffusion-webui/):
|
||||
|
||||
1. (For Windows Users):
|
||||
- Install **Visual Studio 2022** (Community version, for example - you need this step to build some of dependencies):
|
||||
@ -127,8 +59,8 @@ __Don't forget to enable ReActor and set any source (to prevent "no source" erro
|
||||
- OR only **VS C++ Build Tools** (if you don't need the whole Visual Studio) and select "Desktop Development with C++" under "Workloads -> Desktop & Mobile":
|
||||
https://visualstudio.microsoft.com/visual-cpp-build-tools/
|
||||
- OR if you don't want to install VS or VS C++ BT - follow [this steps (sec. VIII)](#insightfacebuild)
|
||||
2. In web-ui, go to the "Extensions" tab, load "Available" extensions and type "ReActor" in the search field or use this URL `https://github.com/Gourieff/sd-webui-reactor` in the "Install from URL" tab - and click "Install"
|
||||
3. Please, wait for several minutes until the installation process will be finished (be patient, don't interrupt the process)
|
||||
2. In web-ui, go to the "Extensions" tab and use this URL `https://github.com/Gourieff/sd-webui-reactor` in the "Install from URL" tab and click "Install"
|
||||
3. Please, wait for several minutes until the installation process will be finished
|
||||
4. Check the last message in your SD-WebUI Console:
|
||||
* If you see the message "--- PLEASE, RESTART the Server! ---" - so, do it, stop the Server (CTRL+C or CMD+C) and start it again - or just go to the "Installed" tab, click "Apply and restart UI"
|
||||
* If you see the message "Done!", just reload the UI
|
||||
@ -141,7 +73,7 @@ __Don't forget to enable ReActor and set any source (to prevent "no source" erro
|
||||
3. Go to (Windows)`automatic\venv\Scripts` or (MacOS/Linux)`automatic/venv/bin`, run Terminal or Console (cmd) for that folder and type `activate`
|
||||
4. Run `pip install insightface==0.7.3`
|
||||
5. Run SD.Next, go to the "Extensions" tab and use this URL `https://github.com/Gourieff/sd-webui-reactor` in the "Install from URL" tab and click "Install"
|
||||
6. Please, wait for several minutes until the installation process will be finished (be patient, don't interrupt the process)
|
||||
6. Please, wait for several minutes until the installation process will be finished
|
||||
7. Check the last message in your SD.Next Console:
|
||||
* If you see the message "--- PLEASE, RESTART the Server! ---" - stop the Server (CTRL+C or CMD+C) or just close your console
|
||||
8. Go to the `automatic\extensions\sd-webui-reactor` directory - if you see there `models\insightface` folder with the file `inswapper_128.onnx`, just move the file to the `automatic\models\insightface` folder
|
||||
@ -149,8 +81,8 @@ __Don't forget to enable ReActor and set any source (to prevent "no source" erro
|
||||
|
||||
<a name="colab">If you use [Cagliostro Colab UI](https://github.com/Linaqruf/sd-notebook-collection):
|
||||
|
||||
1. In active WebUI, go to the "Extensions" tab, load "Available" extensions and type "ReActor" in the search field or use this URL `https://github.com/Gourieff/sd-webui-reactor` in the "Install from URL" tab - and click "Install"
|
||||
2. Please, wait for several minutes until the installation process will be finished (be patient, don't interrupt the process)
|
||||
1. In active WebUI, go to the "Extensions" tab and use this URL `https://github.com/Gourieff/sd-webui-reactor` in the "Install from URL" tab and click "Install"
|
||||
2. Please, wait for several minutes until the installation process will be finished
|
||||
3. When you see the message "--- PLEASE, RESTART the Server! ---" (in your Colab Notebook Start UI section "Start Cagliostro Colab UI") - just go to the "Installed" tab and click "Apply and restart UI"
|
||||
4. Enjoy!
|
||||
|
||||
@ -167,7 +99,7 @@ __Don't forget to enable ReActor and set any source (to prevent "no source" erro
|
||||
- Ability to set the **Postprocessing order**
|
||||
- **100% compatibility** with different **SD WebUIs**: Automatic1111, SD.Next, Cagliostro Colab UI
|
||||
- **Fast performance** even with CPU, ReActor for SD WebUI is absolutely not picky about how powerful your GPU is
|
||||
- **CUDA** acceleration support since version 0.5.0
|
||||
- **CUDA** acceleration support from the version 0.5.0
|
||||
- **[API](/API.md) support**: both SD WebUI built-in and external (via POST/GET requests)
|
||||
- **ComfyUI [support](https://github.com/Gourieff/comfyui-reactor-node)**
|
||||
- **Mac M1/M2 [support](https://github.com/Gourieff/sd-webui-reactor/issues/42)**
|
||||
@ -259,7 +191,7 @@ Please, check the path where "inswapper_128.onnx" model is stored. It must be in
|
||||
7. Then one-by-one:
|
||||
- `pip install insightface==0.7.3`
|
||||
- `pip install onnx`
|
||||
- `pip install "onnxruntime-gpu>=1.16.1"`
|
||||
- `pip install onnxruntime-gpu>=1.16.1`
|
||||
- `pip install opencv-python`
|
||||
- `pip install tqdm`
|
||||
8. Type `deactivate`, you can close your Terminal or Console and start your SD WebUI, ReActor should start OK - if not, welcome to the Issues section.
|
||||
@ -283,7 +215,7 @@ Probably, you need to disable the "SD-CN-Animation" extension (or perhaps some a
|
||||
|
||||
This error may occur if there's smth wrong with the model file `inswapper_128.onnx`
|
||||
|
||||
Try to download it manually from [here](https://huggingface.co/datasets/Gourieff/ReActor/resolve/main/models/inswapper_128.onnx)
|
||||
Try to download it manually from [here](https://github.com/facefusion/facefusion-assets/releases/download/models/inswapper_128.onnx)
|
||||
and put it to the `stable-diffusion-webui\models\insightface` replacing existing one
|
||||
|
||||
### **VI. "ValueError: This ORT build has ['TensorrtExecutionProvider', 'CUDAExecutionProvider', 'CPUExecutionProvider'] enabled" OR "ValueError: This ORT build has ['AzureExecutionProvider', 'CPUExecutionProvider'] enabled"**
|
||||
@ -294,7 +226,7 @@ and put it to the `stable-diffusion-webui\models\insightface` replacing existing
|
||||
4. Then:
|
||||
- `python -m pip install -U pip`
|
||||
- `pip uninstall -y onnxruntime onnxruntime-gpu onnxruntime-silicon onnxruntime-extensions`
|
||||
- `pip install "onnxruntime-gpu>=1.16.1"`
|
||||
- `pip install onnxruntime-gpu>=1.16.1`
|
||||
|
||||
If it didn't help - it seems that you have another extension reinstalling `onnxruntime` when SD WebUI checks requirements. Please see your extensions list. Some extensions can causes reinstalling of `onnxruntime-gpu` to `onnxruntime<1.16.1` every time SD WebUI runs.<br>ORT 1.16.0 has a bug https://github.com/microsoft/onnxruntime/issues/17631 - don't install it!
|
||||
|
||||
@ -307,7 +239,7 @@ If it didn't help - it seems that you have another extension reinstalling `onnxr
|
||||
5. Then:
|
||||
- `python -m pip install -U pip`
|
||||
- `pip uninstall protobuf`
|
||||
- `pip install "protobuf>=3.20.3"`
|
||||
- `pip install protobuf>=3.20.3`
|
||||
|
||||
If this method doesn't help - there is some other extension that has a wrong version of protobuf dependence and SD WebUI installs it on a startup requirements check
|
||||
|
||||
@ -316,10 +248,10 @@ If this method doesn't help - there is some other extension that has a wrong ver
|
||||
### **VIII. (For Windows users) If you still cannot build Insightface for some reasons or just don't want to install Visual Studio or VS C++ Build Tools - do the following:**
|
||||
|
||||
1. Close (stop) your SD WebUI Server if it's running
|
||||
2. Download and put [prebuilt Insightface package](https://github.com/Gourieff/Assets/raw/main/Insightface/insightface-0.7.3-cp310-cp310-win_amd64.whl) into the stable-diffusion-webui (or SD.Next) root folder where you have "webui-user.bat" file or (A1111 Portable) "run.bat"
|
||||
3. From stable-diffusion-webui (or SD.Next) root folder run CMD and `.\venv\Scripts\activate`<br>OR<br>(A1111 Portable) Run CMD
|
||||
4. Then update your PIP: `python -m pip install -U pip`<br>OR<br>(A1111 Portable)`system\python\python.exe -m pip install -U pip`
|
||||
5. Then install Insightface: `pip install insightface-0.7.3-cp310-cp310-win_amd64.whl`<br>OR<br>(A1111 Portable)`system\python\python.exe -m pip install insightface-0.7.3-cp310-cp310-win_amd64.whl`
|
||||
2. Download and put [prebuilt Insightface package](https://github.com/Gourieff/sd-webui-reactor/raw/main/example/insightface-0.7.3-cp310-cp310-win_amd64.whl) into the stable-diffusion-webui (or SD.Next) root folder (where you have "webui-user.bat" file)
|
||||
3. From stable-diffusion-webui (or SD.Next) root folder run CMD and `.\venv\Scripts\activate`
|
||||
4. Then update your PIP: `python -m pip install -U pip`
|
||||
5. Then install Insightface: `pip install insightface-0.7.3-cp310-cp310-win_amd64.whl`
|
||||
6. Enjoy!
|
||||
|
||||
### **IX. 07-August-23 Update problem**
|
||||
@ -353,7 +285,7 @@ For the installation instruction follow the [ReActor Node repo](https://github.c
|
||||
|
||||
This software is meant to be a productive contribution to the rapidly growing AI-generated media industry. It will help artists with tasks such as animating a custom character or using the character as a model for clothing etc.
|
||||
|
||||
The developers of this software are aware of its possible unethical application and are committed to take preventative measures against them. We will continue to develop this project in the positive direction while adhering to law and ethics.
|
||||
The developers of this software are aware of its possible unethical applicaitons and are committed to take preventative measures against them. We will continue to develop this project in the positive direction while adhering to law and ethics.
|
||||
|
||||
Users of this software are expected to use this software responsibly while abiding the local law. If face of a real person is being used, users are suggested to get consent from the concerned person and clearly mention that it is a deepfake when posting content online. **Developers and Contributors of this software are not responsible for actions of end-users.**
|
||||
|
||||
|
||||
100
README_RU.md
100
README_RU.md
@ -1,8 +1,8 @@
|
||||
<div align="center">
|
||||
|
||||
<img src="https://github.com/Gourieff/Assets/raw/main/sd-webui-reactor/ReActor_logo_NEW_RU.png?raw=true" alt="logo" width="180px"/>
|
||||
<img src="https://github.com/Gourieff/Assets/raw/main/sd-webui-reactor/ReActor_logo_red.png?raw=true" alt="logo" width="180px"/>
|
||||
|
||||

|
||||

|
||||
|
||||
<a href="https://boosty.to/artgourieff" target="_blank">
|
||||
<img src="https://lovemet.ru/www/boosty.jpg" width="108" alt="Поддержать проект на Boosty"/>
|
||||
@ -37,69 +37,7 @@
|
||||
|
||||
<a name="latestupdate">
|
||||
|
||||
## Что нового в последних обновлениях
|
||||
|
||||
### 0.7.1 <sub><sup>BETA1
|
||||
|
||||
- Использование пробелов в индексах лиц (пример: 0, 1, 2)
|
||||
- Список моделей лиц теперь отсортирован по алфавиту
|
||||
- [API для создания моделей лиц](./API.md#facemodel-build-api)
|
||||
- Правки и улучшения
|
||||
|
||||
<details>
|
||||
<summary><a>Нажмите, чтобы посмотреть больше</a></summary>
|
||||
|
||||
### 0.7.0 <sub><sup>BETA2
|
||||
|
||||
- X/Y/Z опция улучшена! Добавлен ещё один параметр: теперь вы можете выбрать несколько моделей лиц для создания вариации замененных лиц, чтобы выбрать наилучшие!
|
||||
|
||||
<img src="https://github.com/Gourieff/Assets/blob/main/sd-webui-reactor/0.7.0-whatsnew-05.jpg?raw=true" alt="0.7.0-whatsnew-05" width="100%"/>
|
||||
|
||||
Чтобы использовать ось "Face Model" - активируйте РеАктор и выбирите любую модель лица в качестве источника:<br>
|
||||
<img src="https://github.com/Gourieff/Assets/blob/main/sd-webui-reactor/0.7.0-whatsnew-07.jpg?raw=true" alt="0.7.0-whatsnew-07" width="50%"/><img src="https://github.com/Gourieff/Assets/blob/main/sd-webui-reactor/0.7.0-whatsnew-06.jpg?raw=true" alt="0.7.0-whatsnew-06" width="50%"/>
|
||||
|
||||
Полноразмерное демо-изображение: [xyz_demo_2.png](https://raw.githubusercontent.com/Gourieff/Assets/main/sd-webui-reactor/xyz_demo_2.png)
|
||||
|
||||
### 0.7.0 <sub><sup>BETA1
|
||||
|
||||
- Поддержка X/Y/Z скрипта (до 3-х параметров: CodeFormer Weight, Restorer Visibility, Face Mask Correction)
|
||||
|
||||
<img src="https://github.com/Gourieff/Assets/blob/main/sd-webui-reactor/0.7.0-whatsnew-03.jpg?raw=true" alt="0.7.0-whatsnew-03" width="100%"/>
|
||||
|
||||
Полноразмерное демо-изображение: [xyz_demo.png](https://raw.githubusercontent.com/Gourieff/Assets/main/sd-webui-reactor/xyz_demo.png)
|
||||
|
||||
### 0.7.0 <sub><sup>ALPHA1
|
||||
|
||||
- По многочисленным просьбам появилась возможность строить смешанные модели лиц ("Tools->Face Models->Blend")
|
||||
|
||||
<img src="https://github.com/Gourieff/Assets/blob/main/sd-webui-reactor/0.7.0-whatsnew-01.jpg?raw=true" alt="0.7.0-whatsnew-01" width="100%"/><img src="https://github.com/Gourieff/Assets/blob/main/sd-webui-reactor/0.7.0-whatsnew-02.jpg?raw=true" alt="0.7.0-whatsnew-02" width="100%"/>
|
||||
|
||||
- Поддержка CUDA 12 в скрипте установщика для библиотеки ORT-GPU версии 1.17.0
|
||||
- Новая вкладка "Detection" с параметрами "Threshold" и "Max Faces"
|
||||
|
||||
### 0.6.1 <sub><sup>BETA3
|
||||
|
||||
- Опция 'Force Upscale' внутри вкладки 'Upscale': апскейл выполнится, даже если не было обнаружено ни одного лица (FR https://github.com/Gourieff/sd-webui-reactor/issues/116)
|
||||
- Отображение имён файлов используемых изображений, когда выбрано несколько изображений или папка (а также режим случайного изображения)
|
||||
|
||||
### 0.6.1 <sub><sup>BETA2
|
||||
|
||||
- Опция 'Save original' теперь работает правильно, когда вы выбираете 'Multiple Images' или 'Source Folder'
|
||||
- Добавлен режим выбора случайного изображения для 'Source Folder'
|
||||
|
||||
<img src="https://github.com/Gourieff/Assets/blob/main/sd-webui-reactor/random_from_folder_demo_01.jpg?raw=true" alt="0.6.1-whatsnew-01" width="100%"/>
|
||||
|
||||
### 0.6.0
|
||||
|
||||
- Новый логотип
|
||||
- Адаптация к версии A1111 1.7.0 (правильная загрузка GFPGAN)
|
||||
- Новая ссылка для файла основной модели
|
||||
- UI переработан
|
||||
- Появилась возможность загружать несколько исходных изображений с лицами или задавать путь к папке, содержащей такие изображения
|
||||
|
||||
<img src="https://github.com/Gourieff/Assets/blob/main/sd-webui-reactor/multiple_source_images_demo_01.png?raw=true" alt="0.6.0-whatsnew-01" width="100%"/>
|
||||
|
||||
<img src="https://github.com/Gourieff/Assets/blob/main/sd-webui-reactor/multiple_source_images_demo_02.png?raw=true" alt="0.6.0-whatsnew-02" width="100%"/>
|
||||
## Что нового в последнем обновлении
|
||||
|
||||
### 0.5.1
|
||||
|
||||
@ -108,15 +46,13 @@
|
||||
|
||||
<img src="https://github.com/Gourieff/Assets/blob/main/sd-webui-reactor/face_model_demo_01.jpg?raw=true" alt="0.5.0-whatsnew-01" width="100%"/>
|
||||
|
||||
</details>
|
||||
|
||||
<a name="installation">
|
||||
|
||||
## Установка
|
||||
|
||||
[A1111 WebUI / WebUI-Forge](#a1111) | [SD.Next](#sdnext) | [Google Colab SD WebUI](#colab)
|
||||
[Automatic1111](#a1111) | [Vladmandic SD.Next](#sdnext) | [Google Colab SD WebUI](#colab)
|
||||
|
||||
<a name="a1111">Если вы используете [AUTOMATIC1111 SD WebUI](https://github.com/AUTOMATIC1111/stable-diffusion-webui/) или [SD WebUI Forge](https://github.com/lllyasviel/stable-diffusion-webui-forge):
|
||||
<a name="a1111">Если вы используете [AUTOMATIC1111 Web-UI](https://github.com/AUTOMATIC1111/stable-diffusion-webui/):
|
||||
|
||||
1. (Для пользователей Windows):
|
||||
- Установите **Visual Studio 2022** (Например, версию Community - этот шаг нужен для правильной компиляции библиотеки Insightface):
|
||||
@ -124,8 +60,8 @@
|
||||
- ИЛИ только **VS C++ Build Tools** (если вам не нужен весь пакет Visual Studio), выберите "Desktop Development with C++" в разделе "Workloads -> Desktop & Mobile":
|
||||
https://visualstudio.microsoft.com/visual-cpp-build-tools/
|
||||
- ИЛИ если же вы не хотите устанавливать что-либо из вышеуказанного - выполните [следующие шаги (пункт VIII)](#insightfacebuild)
|
||||
2. Внутри SD Web-UI перейдите во вкладку "Extensions", загрузите список доступных расширений (вкладка "Available") и введите "ReActor" в строке поиска или же вставьте ссылку `https://github.com/Gourieff/sd-webui-reactor` в "Install from URL" - и нажмите "Install"
|
||||
3. Пожалуйста, подождите несколько минут, пока процесс установки полностью не завершится (наберитесь терпения, не прерывайте процесс)
|
||||
2. Внутри SD Web-UI перейдите во вкладку "Extensions" и вставьте ссылку `https://github.com/Gourieff/sd-webui-reactor` в "Install from URL" и нажмите "Install"
|
||||
3. Пожалуйста, подождите несколько минут, пока процесс установки полностью не завершится
|
||||
4. Проверьте последнее сообщение в консоли SD-WebUI:
|
||||
* Если вы видите "--- PLEASE, RESTART the Server! ---" - остановите Сервер (CTRL+C или CMD+C) и запустите его заново - ИЛИ же перейдите во вкладку "Installed", нажмите "Apply and restart UI"
|
||||
* Если вы видите "Done!", просто перезагрузите UI, нажав на "Reload UI"
|
||||
@ -138,7 +74,7 @@
|
||||
3. Перейдите в (Windows)`automatic\venv\Scripts` или (MacOS/Linux)`automatic/venv/bin`, запустите Терминал или Консоль (cmd) для данной папки и выполните `activate`
|
||||
4. Выполните `pip install insightface==0.7.3`
|
||||
5. Запустите SD.Next, перейдите во вкладку "Extensions", вставьте эту ссылку `https://github.com/Gourieff/sd-webui-reactor` в "Install from URL" и нажмите "Install"
|
||||
6. Пожалуйста, подождите несколько минут, пока процесс установки полностью не завершится (наберитесь терпения, не прерывайте процесс)
|
||||
6. Пожалуйста, подождите несколько минут, пока процесс установки полностью не завершится
|
||||
7. Проверьте последнее сообщение в консоли SD.Next:
|
||||
* Если вы видите "--- PLEASE, RESTART the Server! ---" - остановите Сервер (CTRL+C или CMD+C) или просто закройте консоль
|
||||
8. Перейдите в директорию `automatic\extensions\sd-webui-reactor` - если вы видите там папку `models\insightface` с файлом `inswapper_128.onnx` внутри, переместите его в папку `automatic\models\insightface`
|
||||
@ -146,8 +82,8 @@
|
||||
|
||||
<a name="colab">Если вы используете [Cagliostro Colab UI](https://github.com/Linaqruf/sd-notebook-collection):
|
||||
|
||||
1. В активном WebUI перейдите во вкладку "Extensions", загрузите список доступных расширений (вкладка "Available") и введите "ReActor" в строке поиска или же вставьте ссылку `https://github.com/Gourieff/sd-webui-reactor` в "Install from URL" - и нажмите "Install"
|
||||
2. Пожалуйста, подождите некоторое время, пока процесс установки полностью не завершится (наберитесь терпения, не прерывайте процесс)
|
||||
1. В активном WebUI, перейдите во вкладку "Extensions", вставьте ссылку `https://github.com/Gourieff/sd-webui-reactor` в "Install from URL" и нажмите "Install"
|
||||
2. Пожалуйста, подождите некоторое время, пока процесс установки полностью не завершится
|
||||
3. Когда вы увидите сообщение "--- PLEASE, RESTART the Server! ---" (в секции "Start UI" вашего ноутбука "Start Cagliostro Colab UI") - перейдите во вкладку "Installed" и нажмите "Apply and restart UI"
|
||||
4. Готово!
|
||||
|
||||
@ -262,7 +198,7 @@ Inpainting также работает, но замена лица происх
|
||||
7. Далее:
|
||||
- `pip install insightface==0.7.3`
|
||||
- `pip install onnx`
|
||||
- `pip install "onnxruntime-gpu>=1.16.1"`
|
||||
- `pip install onnxruntime-gpu>=1.16.1`
|
||||
- `pip install opencv-python`
|
||||
- `pip install tqdm`
|
||||
8. Выполните `deactivate`, закройте Терминал или Консоль и запустите SD WebUI, ReActor должен запуститься без к-л проблем - если же нет, добро пожаловать в раздел "Issues".
|
||||
@ -286,7 +222,7 @@ Inpainting также работает, но замена лица происх
|
||||
|
||||
Эта ошибка появляется, если что-то не так с файлом модели `inswapper_128.onnx`.
|
||||
|
||||
Скачайте вручную по ссылке [here](https://huggingface.co/datasets/Gourieff/ReActor/resolve/main/models/inswapper_128.onnx)
|
||||
Скачайте вручную по ссылке [here](https://github.com/facefusion/facefusion-assets/releases/download/models/inswapper_128.onnx)
|
||||
и сохраните в директорию `stable-diffusion-webui\models\insightface`, заменив имеющийся файл.
|
||||
|
||||
### **VI. "ValueError: This ORT build has ['TensorrtExecutionProvider', 'CUDAExecutionProvider', 'CPUExecutionProvider'] enabled" ИЛИ "ValueError: This ORT build has ['AzureExecutionProvider', 'CPUExecutionProvider'] enabled"**
|
||||
@ -297,7 +233,7 @@ Inpainting также работает, но замена лица происх
|
||||
4. Затем:
|
||||
- `python -m pip install -U pip`
|
||||
- `pip uninstall -y onnxruntime onnxruntime-gpu onnxruntime-silicon onnxruntime-extensions`
|
||||
- `pip install "onnxruntime-gpu>=1.16.1"`
|
||||
- `pip install onnxruntime-gpu>=1.16.1`
|
||||
|
||||
Если это не помогло - значит какое-то другое расширение переустанавливает `onnxruntime` всякий раз, когда SD WebUI проверяет требования пакетов. Внимательно посмотрите список активных расширений. Некоторые расширения могут вызывать переустановку `onnxruntime-gpu` на версию `onnxruntime<1.16.1` при каждом запуске SD WebUI.<br>ORT 1.16.0 выкатили с ошибкой https://github.com/microsoft/onnxruntime/issues/17631 - не устанавливайте её!
|
||||
|
||||
@ -310,7 +246,7 @@ Inpainting также работает, но замена лица происх
|
||||
5. Затем:
|
||||
- `python -m pip install -U pip`
|
||||
- `pip uninstall protobuf`
|
||||
- `pip install "protobuf>=3.20.3"`
|
||||
- `pip install protobuf>=3.20.3`
|
||||
|
||||
Если это не помгло - значит, есть к-л другое расширение, которое использует неподходящую версию пакета protobuf, и SD WebUI устанавливает эту версию при каждом запуске.
|
||||
|
||||
@ -319,10 +255,10 @@ Inpainting также работает, но замена лица происх
|
||||
### **VIII. (Для пользователей Windows) Если вы до сих пор не можете установить пакет Insightface по каким-то причинам или же просто не желаете устанавливать Visual Studio или VS C++ Build Tools - сделайте следующее:**
|
||||
|
||||
1. Закройте (остановите) SD WebUI Сервер, если он запущен
|
||||
2. Скачайте готовый [пакет Insightface](https://github.com/Gourieff/Assets/raw/main/Insightface/insightface-0.7.3-cp310-cp310-win_amd64.whl) и сохраните его в корневую директорию stable-diffusion-webui (или SD.Next) - туда, где лежит файл "webui-user.bat" или (A1111 Portable) "run.bat"
|
||||
3. Из корневой директории откройте Консоль (CMD) и выполните `.\venv\Scripts\activate`<br>ИЛИ<br>(A1111 Portable) Откройте Консоль (CMD)
|
||||
4. Обновите PIP: `python -m pip install -U pip`<br>ИЛИ<br>(A1111 Portable)`system\python\python.exe -m pip install -U pip`
|
||||
5. Затем установите Insightface: `pip install insightface-0.7.3-cp310-cp310-win_amd64.whl`<br>ИЛИ<br>(A1111 Portable)`system\python\python.exe -m pip install insightface-0.7.3-cp310-cp310-win_amd64.whl`
|
||||
2. Скачайте готовый [пакет Insightface](https://github.com/Gourieff/sd-webui-reactor/raw/main/example/insightface-0.7.3-cp310-cp310-win_amd64.whl) и сохраните его в корневую директорию stable-diffusion-webui (или SD.Next) - туда, где лежит файл "webui-user.bat"
|
||||
3. Из корневой директории откройте Консоль (CMD) и выполните `.\venv\Scripts\activate`
|
||||
4. Обновите PIP: `python -m pip install -U pip`
|
||||
5. Затем установите Insightface: `pip install insightface-0.7.3-cp310-cp310-win_amd64.whl`
|
||||
6. Готово!
|
||||
|
||||
### **IX. Ошибка обновления 07-Август-23**
|
||||
|
||||
@ -31,7 +31,7 @@ args=[
|
||||
1, #5 Restore visibility value
|
||||
True, #7 Restore face -> Upscale
|
||||
'4x_NMKD-Superscale-SP_178000_G', #8 Upscaler (type 'None' if doesn't need), see full list here: http://127.0.0.1:7860/sdapi/v1/script-info -> reactor -> sec.8
|
||||
1.5, #9 Upscaler scale value
|
||||
2, #9 Upscaler scale value
|
||||
1, #10 Upscaler visibility (if scale = 1)
|
||||
False, #11 Swap in source image
|
||||
True, #12 Swap in generated image
|
||||
@ -44,14 +44,8 @@ args=[
|
||||
False, #19 Target Image Hash Check, False - by default
|
||||
"CUDA", #20 CPU or CUDA (if you have it), CPU - by default
|
||||
True, #21 Face Mask Correction
|
||||
1, #22 Select Source, 0 - Image, 1 - Face Model, 2 - Source Folder
|
||||
"elena.safetensors", #23 Filename of the face model (from "models/reactor/faces"), e.g. elena.safetensors, don't forger to set #22 to 1
|
||||
"C:\PATH_TO_FACES_IMAGES", #24 The path to the folder containing source faces images, don't forger to set #22 to 2
|
||||
None, #25 skip it for API
|
||||
True, #26 Randomly select an image from the path
|
||||
True, #27 Force Upscale even if no face found
|
||||
0.6, #28 Face Detection Threshold
|
||||
2, #29 Maximum number of faces to detect (0 is unlimited)
|
||||
1, #22 Select Source, 0 - Image, 1 - Face Model
|
||||
"elena.safetensors", #23 Filename of the face model (from "models/reactor/faces"), e.g. elena.safetensors
|
||||
]
|
||||
|
||||
# The args for ReActor can be found by
|
||||
|
||||
@ -8,7 +8,7 @@ curl -X POST \
|
||||
"source_faces_index": [0],
|
||||
"face_index": [2],
|
||||
"upscaler": "None",
|
||||
"scale": 1.5,
|
||||
"scale": 1,
|
||||
"upscale_visibility": 1,
|
||||
"face_restorer": "CodeFormer",
|
||||
"restorer_visibility": 1,
|
||||
@ -22,8 +22,5 @@ curl -X POST \
|
||||
"device": "CUDA",
|
||||
"mask_face": 1,
|
||||
"select_source": 1,
|
||||
"face_model": "elena.safetensors",
|
||||
"source_folder": "C:/faces",
|
||||
"random_image": 1,
|
||||
"upscale_force": 1
|
||||
"face_model": "elena.safetensors"
|
||||
}'
|
||||
|
||||
@ -4,7 +4,7 @@
|
||||
"source_faces_index": [0],
|
||||
"face_index": [2],
|
||||
"upscaler": "None",
|
||||
"scale": 1.5,
|
||||
"scale": 1,
|
||||
"upscale_visibility": 1,
|
||||
"face_restorer": "CodeFormer",
|
||||
"restorer_visibility": 1,
|
||||
@ -18,8 +18,5 @@
|
||||
"device": "CUDA",
|
||||
"mask_face": 1,
|
||||
"select_source": 1,
|
||||
"face_model": "elena.safetensors",
|
||||
"source_folder": "C:/faces",
|
||||
"random_image": 1,
|
||||
"upscale_force": 1
|
||||
"face_model": "elena.safetensors"
|
||||
}
|
||||
BIN
example/insightface-0.7.3-cp310-cp310-win_amd64.whl
Normal file
BIN
example/insightface-0.7.3-cp310-cp310-win_amd64.whl
Normal file
Binary file not shown.
39
install.py
39
install.py
@ -12,7 +12,7 @@ except:
|
||||
try:
|
||||
from modules.paths import models_path
|
||||
except:
|
||||
models_path = os.path.abspath("models")
|
||||
model_path = os.path.abspath("models")
|
||||
|
||||
|
||||
BASE_PATH = os.path.dirname(os.path.realpath(__file__))
|
||||
@ -21,7 +21,21 @@ req_file = os.path.join(BASE_PATH, "requirements.txt")
|
||||
|
||||
models_dir = os.path.join(models_path, "insightface")
|
||||
|
||||
model_url = "https://huggingface.co/datasets/Gourieff/ReActor/resolve/main/models/inswapper_128.onnx"
|
||||
# DEPRECATED:
|
||||
# models_dir_old = os.path.join(models_path, "roop")
|
||||
# if os.path.exists(models_dir_old):
|
||||
# if not os.listdir(models_dir_old) and (not os.listdir(models_dir) or not os.path.exists(models_dir)):
|
||||
# os.rename(models_dir_old, models_dir)
|
||||
# else:
|
||||
# import shutil
|
||||
# for file in os.listdir(models_dir_old):
|
||||
# shutil.move(os.path.join(models_dir_old, file), os.path.join(models_dir, file))
|
||||
# try:
|
||||
# os.rmdir(models_dir_old)
|
||||
# except Exception as e:
|
||||
# print(f"OSError: {e}")
|
||||
|
||||
model_url = "https://github.com/facefusion/facefusion-assets/releases/download/models/inswapper_128.onnx"
|
||||
model_name = os.path.basename(model_url)
|
||||
model_path = os.path.join(models_dir, model_name)
|
||||
|
||||
@ -61,7 +75,7 @@ if not os.path.exists(models_dir):
|
||||
if not os.path.exists(model_path):
|
||||
download(model_url, model_path)
|
||||
|
||||
# print("ReActor preheating...", end=' ')
|
||||
print("ReActor preheating...", end=' ')
|
||||
|
||||
last_device = None
|
||||
first_run = False
|
||||
@ -83,14 +97,11 @@ with open(req_file) as file:
|
||||
install_count = 0
|
||||
ort = "onnxruntime-gpu"
|
||||
import torch
|
||||
cuda_version = None
|
||||
try:
|
||||
if torch.cuda.is_available():
|
||||
cuda_version = torch.version.cuda
|
||||
print(f"CUDA {cuda_version}")
|
||||
if first_run or last_device is None:
|
||||
last_device = "CUDA"
|
||||
elif torch.backends.mps.is_available() or hasattr(torch,'dml') or hasattr(torch,'privateuseone'):
|
||||
elif torch.backends.mps.is_available() or hasattr(torch,'dml'):
|
||||
ort = "onnxruntime"
|
||||
# to prevent errors when ORT-GPU is installed but we want ORT instead:
|
||||
if first_run:
|
||||
@ -103,24 +114,14 @@ with open(req_file) as file:
|
||||
last_device = "CPU"
|
||||
with open(os.path.join(BASE_PATH, "last_device.txt"), "w") as txt:
|
||||
txt.write(last_device)
|
||||
if cuda_version is not None:
|
||||
if float(cuda_version)>=12: # CU12.x
|
||||
extra_index_url = "https://aiinfra.pkgs.visualstudio.com/PublicPackages/_packaging/onnxruntime-cuda-12/pypi/simple/"
|
||||
else: # CU11.8
|
||||
extra_index_url = "https://aiinfra.pkgs.visualstudio.com/PublicPackages/_packaging/onnxruntime-cuda-11/pypi/simple"
|
||||
if not is_installed(ort,"1.17.1",True):
|
||||
install_count += 1
|
||||
ort = "onnxruntime-gpu==1.17.1"
|
||||
pip_uninstall("onnxruntime", "onnxruntime-gpu")
|
||||
pip_install(ort,"--extra-index-url",extra_index_url)
|
||||
elif not is_installed(ort,"1.18.1",False):
|
||||
if not is_installed(ort,"1.16.1",False):
|
||||
install_count += 1
|
||||
pip_install(ort, "-U")
|
||||
except Exception as e:
|
||||
print(e)
|
||||
print(f"\nERROR: Failed to install {ort} - ReActor won't start")
|
||||
raise e
|
||||
# print(f"Device: {last_device}")
|
||||
print(f"Device: {last_device}")
|
||||
strict = True
|
||||
for package in file:
|
||||
package_version = None
|
||||
|
||||
@ -1,5 +0,0 @@
|
||||
import reactor_ui.reactor_upscale_ui as ui_upscale
|
||||
import reactor_ui.reactor_tools_ui as ui_tools
|
||||
import reactor_ui.reactor_settings_ui as ui_settings
|
||||
import reactor_ui.reactor_main_ui as ui_main
|
||||
import reactor_ui.reactor_detection_ui as ui_detection
|
||||
@ -1,54 +0,0 @@
|
||||
import gradio as gr
|
||||
from scripts.reactor_swapper import (
|
||||
clear_faces,
|
||||
clear_faces_list,
|
||||
clear_faces_target,
|
||||
clear_faces_all
|
||||
)
|
||||
|
||||
# TAB DETECTION
|
||||
def show(show_br: bool = True):
|
||||
with gr.Tab("Detection"):
|
||||
with gr.Row():
|
||||
det_thresh = gr.Slider(
|
||||
minimum=0.1,
|
||||
maximum=1.0,
|
||||
value=0.5,
|
||||
step=0.01,
|
||||
label="Threshold",
|
||||
info="The higher the value, the more sensitive the detection is to what is considered a face (0.5 by default)",
|
||||
scale=2
|
||||
)
|
||||
det_maxnum = gr.Slider(
|
||||
minimum=0,
|
||||
maximum=20,
|
||||
value=0,
|
||||
step=1,
|
||||
label="Max Faces",
|
||||
info="Maximum number of faces to detect (0 is unlimited)",
|
||||
scale=1
|
||||
)
|
||||
# gr.Markdown("<br>", visible=show_br)
|
||||
gr.Markdown("Hashed images get processed with previously set detection parameters (the face is hashed with all available parameters to bypass the analyzer and speed up the process). Please clear the hash if you want to apply new detection settings.", visible=show_br)
|
||||
with gr.Row():
|
||||
imgs_hash_clear_single = gr.Button(
|
||||
value="Clear Source Images Hash (Single)",
|
||||
scale=1
|
||||
)
|
||||
imgs_hash_clear_multiple = gr.Button(
|
||||
value="Clear Source Images Hash (Multiple)",
|
||||
scale=1
|
||||
)
|
||||
imgs_hash_clear_target = gr.Button(
|
||||
value="Clear Target Image Hash",
|
||||
scale=1
|
||||
)
|
||||
imgs_hash_clear_all = gr.Button(
|
||||
value="Clear All Hash"
|
||||
)
|
||||
progressbar_area = gr.Markdown("")
|
||||
imgs_hash_clear_single.click(clear_faces,None,[progressbar_area])
|
||||
imgs_hash_clear_multiple.click(clear_faces_list,None,[progressbar_area])
|
||||
imgs_hash_clear_target.click(clear_faces_target,None,[progressbar_area])
|
||||
imgs_hash_clear_all.click(clear_faces_all,None,[progressbar_area])
|
||||
return det_thresh, det_maxnum
|
||||
@ -1,229 +0,0 @@
|
||||
import gradio as gr
|
||||
from scripts.reactor_helpers import (
|
||||
get_model_names,
|
||||
get_facemodels
|
||||
)
|
||||
from scripts.reactor_swapper import (
|
||||
clear_faces_list,
|
||||
)
|
||||
from modules import shared
|
||||
|
||||
# SAVE_ORIGINAL: bool = False
|
||||
|
||||
def update_fm_list(selected: str):
|
||||
try: # GR3.x
|
||||
return gr.Dropdown.update(
|
||||
value=selected, choices=get_model_names(get_facemodels)
|
||||
)
|
||||
except: # GR4.x
|
||||
return gr.Dropdown(
|
||||
value=selected, choices=get_model_names(get_facemodels)
|
||||
)
|
||||
|
||||
# TAB MAIN
|
||||
def show(is_img2img: bool, show_br: bool = True, **msgs):
|
||||
|
||||
# def on_select_source(selected: bool, evt: gr.SelectData):
|
||||
def on_select_source(evt: gr.SelectData):
|
||||
# global SAVE_ORIGINAL
|
||||
if evt.index == 2:
|
||||
# if SAVE_ORIGINAL != selected:
|
||||
# SAVE_ORIGINAL = selected
|
||||
try: # GR3.x
|
||||
return {
|
||||
control_col_1: gr.Column.update(visible=False),
|
||||
control_col_2: gr.Column.update(visible=False),
|
||||
control_col_3: gr.Column.update(visible=True),
|
||||
# save_original: gr.Checkbox.update(value=False,visible=False),
|
||||
imgs_hash_clear: gr.Button.update(visible=True)
|
||||
}
|
||||
except: # GR4.x
|
||||
return {
|
||||
control_col_1: gr.Column(visible=False),
|
||||
control_col_2: gr.Column(visible=False),
|
||||
control_col_3: gr.Column(visible=True),
|
||||
# save_original: gr.Checkbox.update(value=False,visible=False),
|
||||
imgs_hash_clear: gr.Button(visible=True)
|
||||
}
|
||||
if evt.index == 0:
|
||||
try: # GR3.x
|
||||
return {
|
||||
control_col_1: gr.Column.update(visible=True),
|
||||
control_col_2: gr.Column.update(visible=False),
|
||||
control_col_3: gr.Column.update(visible=False),
|
||||
# save_original: gr.Checkbox.update(value=SAVE_ORIGINAL,visible=show_br),
|
||||
imgs_hash_clear: gr.Button.update(visible=False)
|
||||
}
|
||||
except: # GR4.x
|
||||
return {
|
||||
control_col_1: gr.Column(visible=True),
|
||||
control_col_2: gr.Column(visible=False),
|
||||
control_col_3: gr.Column(visible=False),
|
||||
# save_original: gr.Checkbox.update(value=SAVE_ORIGINAL,visible=show_br),
|
||||
imgs_hash_clear: gr.Button(visible=False)
|
||||
}
|
||||
if evt.index == 1:
|
||||
try: # GR3.x
|
||||
return {
|
||||
control_col_1: gr.Column.update(visible=False),
|
||||
control_col_2: gr.Column.update(visible=True),
|
||||
control_col_3: gr.Column.update(visible=False),
|
||||
# save_original: gr.Checkbox.update(value=SAVE_ORIGINAL,visible=show_br),
|
||||
imgs_hash_clear: gr.Button.update(visible=False)
|
||||
}
|
||||
except: # GR4.x
|
||||
return {
|
||||
control_col_1: gr.Column(visible=False),
|
||||
control_col_2: gr.Column(visible=True),
|
||||
control_col_3: gr.Column(visible=False),
|
||||
# save_original: gr.Checkbox.update(value=SAVE_ORIGINAL,visible=show_br),
|
||||
imgs_hash_clear: gr.Button(visible=False)
|
||||
}
|
||||
|
||||
progressbar_area = gr.Markdown("")
|
||||
with gr.Tab("Main"):
|
||||
with gr.Column():
|
||||
with gr.Row():
|
||||
select_source = gr.Radio(
|
||||
["Image(s)","Face Model","Folder"],
|
||||
value="Image(s)",
|
||||
label="Select Source",
|
||||
type="index",
|
||||
scale=1,
|
||||
)
|
||||
with gr.Column(visible=False) as control_col_2:
|
||||
with gr.Row():
|
||||
face_models = get_model_names(get_facemodels)
|
||||
face_model = gr.Dropdown(
|
||||
choices=face_models,
|
||||
label="Choose Face Model",
|
||||
value="None",
|
||||
scale=1,
|
||||
)
|
||||
fm_update = gr.Button(
|
||||
value="🔄",
|
||||
variant="tool",
|
||||
)
|
||||
fm_update.click(
|
||||
update_fm_list,
|
||||
inputs=[face_model],
|
||||
outputs=[face_model],
|
||||
)
|
||||
imgs_hash_clear = gr.Button(
|
||||
value="Clear Source Images Hash",
|
||||
scale=1,
|
||||
visible=False,
|
||||
)
|
||||
imgs_hash_clear.click(clear_faces_list,None,[progressbar_area])
|
||||
gr.Markdown("<br>", visible=show_br)
|
||||
with gr.Column(visible=True) as control_col_1:
|
||||
with gr.Row():
|
||||
selected_tab = gr.Textbox('tab_single', visible=False)
|
||||
with gr.Tabs() as tab_single:
|
||||
with gr.Tab('Single'):
|
||||
img = gr.Image(
|
||||
type="pil",
|
||||
label="Single Source Image",
|
||||
)
|
||||
with gr.Tab('Multiple') as tab_multiple:
|
||||
imgs = gr.Files(
|
||||
label=f"Multiple Source Images{msgs['extra_multiple_source']}",
|
||||
file_types=["image"],
|
||||
)
|
||||
tab_single.select(fn=lambda: 'tab_single', inputs=[], outputs=[selected_tab])
|
||||
tab_multiple.select(fn=lambda: 'tab_multiple', inputs=[], outputs=[selected_tab])
|
||||
with gr.Column(visible=False) as control_col_3:
|
||||
gr.Markdown("<span style='display:block;text-align:right;padding-right:3px;margin: -15px 0;font-size:1.1em'><sup>Clear Hash if you see the previous face was swapped instead of the new one</sup></span>")
|
||||
with gr.Row():
|
||||
source_folder = gr.Textbox(
|
||||
value="",
|
||||
placeholder="Paste here the path to the folder containing source faces images",
|
||||
label=f"Source Folder{msgs['extra_multiple_source']}",
|
||||
scale=2,
|
||||
)
|
||||
random_image = gr.Checkbox(
|
||||
False,
|
||||
label="Random Image",
|
||||
info="Randomly select an image from the path",
|
||||
scale=1,
|
||||
)
|
||||
setattr(face_model, "do_not_save_to_config", True)
|
||||
if is_img2img:
|
||||
save_original = gr.Checkbox(
|
||||
False,
|
||||
label="Save Original (Swap in generated only)",
|
||||
info="Save the original image(s) made before swapping"
|
||||
)
|
||||
else:
|
||||
save_original = gr.Checkbox(
|
||||
False,
|
||||
label="Save Original",
|
||||
info="Save the original image(s) made before swapping",
|
||||
visible=show_br
|
||||
)
|
||||
# imgs.upload(on_files_upload_uncheck_so,[save_original],[save_original],show_progress=False)
|
||||
# imgs.clear(on_files_clear,None,[save_original],show_progress=False)
|
||||
imgs.clear(clear_faces_list,None,None,show_progress=False)
|
||||
mask_face = gr.Checkbox(
|
||||
False,
|
||||
label="Face Mask Correction",
|
||||
info="Apply this option if you see some pixelation around face contours"
|
||||
)
|
||||
gr.Markdown("<br>", visible=show_br)
|
||||
gr.Markdown("Source Image (above):")
|
||||
with gr.Row():
|
||||
source_faces_index = gr.Textbox(
|
||||
value="0",
|
||||
placeholder="Which face(s) to use as Source (comma separated)",
|
||||
label="Comma separated face number(s); Example: 0,2,1",
|
||||
)
|
||||
gender_source = gr.Radio(
|
||||
["No", "Female Only", "Male Only"],
|
||||
value="No",
|
||||
label="Gender Detection (Source)",
|
||||
type="index",
|
||||
)
|
||||
gr.Markdown("<br>", visible=show_br)
|
||||
gr.Markdown("Target Image (result):")
|
||||
with gr.Row():
|
||||
faces_index = gr.Textbox(
|
||||
value="0",
|
||||
placeholder="Which face(s) to Swap into Target (comma separated)",
|
||||
label="Comma separated face number(s); Example: 1,0,2",
|
||||
)
|
||||
gender_target = gr.Radio(
|
||||
["No", "Female Only", "Male Only"],
|
||||
value="No",
|
||||
label="Gender Detection (Target)",
|
||||
type="index",
|
||||
)
|
||||
gr.Markdown("<br>", visible=show_br)
|
||||
with gr.Row():
|
||||
face_restorer_name = gr.Radio(
|
||||
label="Restore Face",
|
||||
choices=["None"] + [x.name() for x in shared.face_restorers],
|
||||
value=shared.face_restorers[0].name(),
|
||||
type="value",
|
||||
)
|
||||
with gr.Column():
|
||||
face_restorer_visibility = gr.Slider(
|
||||
0, 1, 1, step=0.1, label="Restore Face Visibility"
|
||||
)
|
||||
codeformer_weight = gr.Slider(
|
||||
0, 1, 0.5, step=0.1, label="CodeFormer Weight (Fidelity)", info="0 = far from original (max restoration), 1 = close to original (min restoration)"
|
||||
)
|
||||
gr.Markdown("<br>", visible=show_br)
|
||||
swap_in_source = gr.Checkbox(
|
||||
False,
|
||||
label="Swap in source image",
|
||||
visible=is_img2img,
|
||||
)
|
||||
swap_in_generated = gr.Checkbox(
|
||||
True,
|
||||
label="Swap in generated image",
|
||||
visible=is_img2img,
|
||||
)
|
||||
# select_source.select(on_select_source,[save_original],[control_col_1,control_col_2,control_col_3,save_original,imgs_hash_clear],show_progress=False)
|
||||
select_source.select(on_select_source,None,[control_col_1,control_col_2,control_col_3,imgs_hash_clear],show_progress=False)
|
||||
|
||||
return img, imgs, selected_tab, select_source, face_model, source_folder, save_original, mask_face, source_faces_index, gender_source, faces_index, gender_target, face_restorer_name, face_restorer_visibility, codeformer_weight, swap_in_source, swap_in_generated, random_image
|
||||
@ -1,77 +0,0 @@
|
||||
import gradio as gr
|
||||
from scripts.reactor_logger import logger
|
||||
from scripts.reactor_helpers import get_models, set_Device
|
||||
from scripts.reactor_globals import DEVICE, DEVICE_LIST
|
||||
try:
|
||||
import torch.cuda as cuda
|
||||
EP_is_visible = True if cuda.is_available() else False
|
||||
except:
|
||||
EP_is_visible = False
|
||||
|
||||
def update_models_list(selected: str):
|
||||
return gr.Dropdown.update(
|
||||
value=selected, choices=get_models()
|
||||
)
|
||||
|
||||
def show(hash_check_block: bool = True):
|
||||
# TAB SETTINGS
|
||||
with gr.Tab("Settings"):
|
||||
models = get_models()
|
||||
with gr.Row(visible=EP_is_visible):
|
||||
device = gr.Radio(
|
||||
label="Execution Provider",
|
||||
choices=DEVICE_LIST,
|
||||
value=DEVICE,
|
||||
type="value",
|
||||
info="Click 'Save' to apply. If you already run 'Generate' - RESTART is required: (A1111) Extensions Tab -> 'Apply and restart UI' or (SD.Next) close the Server and start it again",
|
||||
scale=2,
|
||||
)
|
||||
save_device_btn = gr.Button("Save", scale=0)
|
||||
save = gr.Markdown("", visible=EP_is_visible)
|
||||
setattr(device, "do_not_save_to_config", True)
|
||||
save_device_btn.click(
|
||||
set_Device,
|
||||
inputs=[device],
|
||||
outputs=[save],
|
||||
)
|
||||
with gr.Row():
|
||||
if len(models) == 0:
|
||||
logger.warning(
|
||||
"You should at least have one model in models directory, please read the doc here: https://github.com/Gourieff/sd-webui-reactor/"
|
||||
)
|
||||
model = gr.Dropdown(
|
||||
choices=models,
|
||||
label="Model not found, please download one and refresh the list"
|
||||
)
|
||||
else:
|
||||
model = gr.Dropdown(
|
||||
choices=models, label="Model", value=models[0]
|
||||
)
|
||||
models_update = gr.Button(
|
||||
value="🔄",
|
||||
variant="tool",
|
||||
)
|
||||
models_update.click(
|
||||
update_models_list,
|
||||
inputs=[model],
|
||||
outputs=[model],
|
||||
)
|
||||
console_logging_level = gr.Radio(
|
||||
["No log", "Minimum", "Default"],
|
||||
value="Minimum",
|
||||
label="Console Log Level",
|
||||
type="index"
|
||||
)
|
||||
gr.Markdown("<br>", visible=hash_check_block)
|
||||
with gr.Row(visible=hash_check_block):
|
||||
source_hash_check = gr.Checkbox(
|
||||
True,
|
||||
label="Source Image Hash Check",
|
||||
info="Recommended to keep it ON. Processing is faster when Source Image is the same."
|
||||
)
|
||||
target_hash_check = gr.Checkbox(
|
||||
False,
|
||||
label="Target Image Hash Check",
|
||||
info="Affects if you use Extras tab or img2img with only 'Swap in source image' on."
|
||||
)
|
||||
return model, device, console_logging_level, source_hash_check, target_hash_check
|
||||
@ -1,61 +0,0 @@
|
||||
import gradio as gr
|
||||
from scripts.reactor_swapper import build_face_model, blend_faces
|
||||
|
||||
# TAB TOOLS
|
||||
def show():
|
||||
with gr.Tab("Tools"):
|
||||
with gr.Tab("Face Models"):
|
||||
|
||||
with gr.Tab("Single"):
|
||||
gr.Markdown("Load an image containing one person, name it and click 'Build and Save'")
|
||||
img_fm = gr.Image(
|
||||
type="pil",
|
||||
label="Load an Image to build -Face Model-",
|
||||
)
|
||||
with gr.Row(equal_height=True):
|
||||
fm_name = gr.Textbox(
|
||||
value="",
|
||||
placeholder="Please type any name (e.g. Elena)",
|
||||
label="Face Model Name",
|
||||
)
|
||||
save_fm_btn = gr.Button("Build and Save")
|
||||
save_fm = gr.Markdown("You can find saved models in 'models/reactor/faces'")
|
||||
save_fm_btn.click(
|
||||
build_face_model,
|
||||
inputs=[img_fm, fm_name],
|
||||
outputs=[save_fm],
|
||||
)
|
||||
|
||||
with gr.Tab("Blend"):
|
||||
gr.Markdown("Load a set of images containing any person, name it and click 'Build and Save'")
|
||||
with gr.Row():
|
||||
imgs_fm = gr.Files(
|
||||
label=f"Load Images to build -Blended Face Model-",
|
||||
file_types=["image"]
|
||||
)
|
||||
with gr.Column():
|
||||
compute_method = gr.Radio(
|
||||
["Mean", "Median", "Mode"],
|
||||
value="Mean",
|
||||
label="Compute Method",
|
||||
type="index",
|
||||
info="Mean (recommended) - Average value (best result 👍); Median* - Mid-point value (may be funny 😅); Mode - Most common value (may be scary 😨); *Mean and Median will be similar if you load two images"
|
||||
)
|
||||
shape_check = gr.Checkbox(
|
||||
False,
|
||||
label="Check -Embedding Shape- on Similarity",
|
||||
info="(Experimental) Turn it ON if you want to skip the faces which are too much different from the first one in the list to prevent some probable 'shape mismatches'"
|
||||
)
|
||||
with gr.Row(equal_height=True):
|
||||
fm_name = gr.Textbox(
|
||||
value="",
|
||||
placeholder="Please type any name (e.g. Elena)",
|
||||
label="Face Model Name",
|
||||
)
|
||||
save_fm_btn = gr.Button("Build and Save")
|
||||
save_fm = gr.Markdown("You can find saved models in 'models/reactor/faces'")
|
||||
save_fm_btn.click(
|
||||
blend_faces,
|
||||
inputs=[imgs_fm, fm_name, compute_method, shape_check],
|
||||
outputs=[save_fm],
|
||||
)
|
||||
@ -1,47 +0,0 @@
|
||||
import gradio as gr
|
||||
from modules import shared
|
||||
|
||||
def update_upscalers_list(selected: str):
|
||||
return gr.Dropdown.update(
|
||||
value=selected, choices=[upscaler.name for upscaler in shared.sd_upscalers]
|
||||
)
|
||||
|
||||
# TAB UPSCALE
|
||||
def show(show_br: bool = True):
|
||||
with gr.Tab("Upscale"):
|
||||
with gr.Row():
|
||||
restore_first = gr.Checkbox(
|
||||
True,
|
||||
label="1. Restore Face -> 2. Upscale (-Uncheck- if you want vice versa)",
|
||||
info="Postprocessing Order",
|
||||
scale=2
|
||||
)
|
||||
upscale_force = gr.Checkbox(
|
||||
False,
|
||||
label="Force Upscale",
|
||||
info="Upscale anyway - even if no face found",
|
||||
scale=1
|
||||
)
|
||||
with gr.Row():
|
||||
upscaler_name = gr.Dropdown(
|
||||
choices=[upscaler.name for upscaler in shared.sd_upscalers],
|
||||
label="Upscaler",
|
||||
value="None",
|
||||
info="Won't scale if you choose -Swap in Source- via img2img, only 1x-postprocessing will affect (texturing, denoising, restyling etc.)"
|
||||
)
|
||||
upscalers_update = gr.Button(
|
||||
value="🔄",
|
||||
variant="tool",
|
||||
)
|
||||
upscalers_update.click(
|
||||
update_upscalers_list,
|
||||
inputs=[upscaler_name],
|
||||
outputs=[upscaler_name],
|
||||
)
|
||||
gr.Markdown("<br>", visible=show_br)
|
||||
with gr.Row():
|
||||
upscaler_scale = gr.Slider(1, 8, 1, step=0.1, label="Scale by")
|
||||
upscaler_visibility = gr.Slider(
|
||||
0, 1, 1, step=0.1, label="Upscaler Visibility (if scale = 1)"
|
||||
)
|
||||
return restore_first, upscaler_name, upscaler_scale, upscaler_visibility, upscale_force
|
||||
@ -1,4 +1,3 @@
|
||||
albumentations==1.4.3
|
||||
insightface==0.7.3
|
||||
onnx==1.16.1
|
||||
onnx>=1.14.0
|
||||
opencv-python>=4.7.0.72
|
||||
|
||||
@ -2,7 +2,7 @@ import os.path as osp
|
||||
import glob
|
||||
import logging
|
||||
import insightface
|
||||
from insightface.model_zoo.model_zoo import ModelRouter, PickableInferenceSession, get_default_providers
|
||||
from insightface.model_zoo.model_zoo import ModelRouter, PickableInferenceSession
|
||||
from insightface.model_zoo.retinaface import RetinaFace
|
||||
from insightface.model_zoo.landmark import Landmark
|
||||
from insightface.model_zoo.attribute import Attribute
|
||||
@ -97,20 +97,15 @@ def patched_inswapper_init(self, model_file=None, session=None):
|
||||
self.input_size = tuple(input_shape[2:4][::-1])
|
||||
|
||||
|
||||
def patched_get_default_providers():
|
||||
return ['TensorrtExecutionProvider', 'CUDAExecutionProvider', 'CPUExecutionProvider']
|
||||
|
||||
|
||||
def patch_insightface(get_default_providers, get_model, faceanalysis_init, faceanalysis_prepare, inswapper_init):
|
||||
insightface.model_zoo.model_zoo.get_default_providers = get_default_providers
|
||||
def patch_insightface(get_model, faceanalysis_init, faceanalysis_prepare, inswapper_init):
|
||||
insightface.model_zoo.model_zoo.ModelRouter.get_model = get_model
|
||||
insightface.app.FaceAnalysis.__init__ = faceanalysis_init
|
||||
insightface.app.FaceAnalysis.prepare = faceanalysis_prepare
|
||||
insightface.model_zoo.inswapper.INSwapper.__init__ = inswapper_init
|
||||
|
||||
|
||||
original_functions = [patched_get_default_providers, ModelRouter.get_model, FaceAnalysis.__init__, FaceAnalysis.prepare, INSwapper.__init__]
|
||||
patched_functions = [patched_get_default_providers, patched_get_model, patched_faceanalysis_init, patched_faceanalysis_prepare, patched_inswapper_init]
|
||||
original_functions = [ModelRouter.get_model, FaceAnalysis.__init__, FaceAnalysis.prepare, INSwapper.__init__]
|
||||
patched_functions = [patched_get_model, patched_faceanalysis_init, patched_faceanalysis_prepare, patched_inswapper_init]
|
||||
|
||||
|
||||
def apply_logging_patch(console_logging_level):
|
||||
|
||||
@ -1,23 +1,12 @@
|
||||
'''
|
||||
Thanks SpenserCai for the original version of the roop api script
|
||||
-----------------------------------
|
||||
--- ReActor External API v1.0.8a ---
|
||||
--- ReActor External API v1.0.1 ---
|
||||
-----------------------------------
|
||||
'''
|
||||
import os, glob
|
||||
from datetime import datetime, date
|
||||
from fastapi import FastAPI, Body
|
||||
# from fastapi.exceptions import HTTPException
|
||||
# from io import BytesIO
|
||||
# from PIL import Image
|
||||
# import base64
|
||||
# import numpy as np
|
||||
# import cv2
|
||||
import asyncio
|
||||
from concurrent.futures import ThreadPoolExecutor
|
||||
# from concurrent.futures.process import ProcessPoolExecutor
|
||||
# from contextlib import asynccontextmanager
|
||||
# import multiprocessing
|
||||
|
||||
# from modules.api.models import *
|
||||
from modules import scripts, shared
|
||||
@ -25,32 +14,8 @@ from modules.api import api
|
||||
|
||||
import gradio as gr
|
||||
|
||||
from scripts.reactor_swapper import EnhancementOptions, blend_faces, swap_face, DetectionOptions
|
||||
from scripts.reactor_swapper import EnhancementOptions, swap_face
|
||||
from scripts.reactor_logger import logger
|
||||
from scripts.reactor_helpers import get_facemodels
|
||||
|
||||
|
||||
# @asynccontextmanager
|
||||
# async def lifespan(app: FastAPI):
|
||||
# app.state.executor = ProcessPoolExecutor(max_workers=4)
|
||||
# yield
|
||||
# app.state.executor.shutdown()
|
||||
|
||||
# app = FastAPI(lifespan=lifespan)
|
||||
|
||||
# def run_app(a: FastAPI):
|
||||
# global app
|
||||
# a = app
|
||||
# return a
|
||||
|
||||
# _executor_tp = ThreadPoolExecutor(max_workers=8)
|
||||
# def entry_point():
|
||||
# _executor_pp = ProcessPoolExecutor(max_workers=8)
|
||||
# pool = multiprocessing.Pool(4)
|
||||
|
||||
async def run_event(app, fn, *args):
|
||||
loop = asyncio.get_event_loop()
|
||||
return await loop.run_in_executor(app.state.executor, fn, *args)
|
||||
|
||||
|
||||
def default_file_path():
|
||||
@ -87,21 +52,7 @@ def get_full_model(model_name):
|
||||
return model
|
||||
return None
|
||||
|
||||
# def decode_base64_to_image_rgba(encoding):
|
||||
# if encoding.startswith("data:image/"):
|
||||
# encoding = encoding.split(";")[1].split(",")[1]
|
||||
# try:
|
||||
# im_bytes = base64.b64decode(encoding)
|
||||
# im_arr = np.frombuffer(im_bytes, dtype=np.uint8) # im_arr is one-dim Numpy array
|
||||
# img = cv2.imdecode(im_arr, flags=cv2.IMREAD_UNCHANGED)
|
||||
# img = cv2.cvtColor(img, cv2.COLOR_BGRA2RGBA)
|
||||
# image = Image.fromarray(img, mode="RGBA")
|
||||
# return image
|
||||
# except Exception as e:
|
||||
# raise HTTPException(status_code=500, detail="Invalid encoded image") from e
|
||||
|
||||
def reactor_api(_: gr.Blocks, app: FastAPI):
|
||||
app.state.executor = ThreadPoolExecutor(max_workers=8)
|
||||
@app.post("/reactor/image")
|
||||
async def reactor_image(
|
||||
source_image: str = Body("",title="Source Face Image"),
|
||||
@ -109,7 +60,7 @@ def reactor_api(_: gr.Blocks, app: FastAPI):
|
||||
source_faces_index: list[int] = Body([0],title="Comma separated face number(s) from swap-source image"),
|
||||
face_index: list[int] = Body([0],title="Comma separated face number(s) for target image (result)"),
|
||||
upscaler: str = Body("None",title="Upscaler"),
|
||||
scale: float = Body(1,title="Scale by"),
|
||||
scale: int = Body(1,title="Scale by"),
|
||||
upscale_visibility: float = Body(1,title="Upscaler visibility (if scale = 1)"),
|
||||
face_restorer: str = Body("None",title="Restore Face: 0 - None; 1 - CodeFormer; 2 - GFPGA"),
|
||||
restorer_visibility: float = Body(1,title="Restore visibility value"),
|
||||
@ -122,55 +73,31 @@ def reactor_api(_: gr.Blocks, app: FastAPI):
|
||||
result_file_path: str = Body("",title="(if 'save_to_file = 1') Result file path"),
|
||||
device: str = Body("CPU",title="CPU or CUDA (if you have it)"),
|
||||
mask_face: int = Body(0,title="Face Mask Correction, 1 - True, 0 - False"),
|
||||
select_source: int = Body(0,title="Select Source, 0 - Image, 1 - Face Model, 2 - Source Folder"),
|
||||
face_model: str = Body("None",title="Filename of the face model (from 'models/reactor/faces'), e.g. elena.safetensors"),
|
||||
source_folder: str = Body("",title="The path to the folder containing source faces images"),
|
||||
random_image: int = Body(0,title="Randomly select an image from the path"),
|
||||
upscale_force: int = Body(0,title="Force Upscale even if no face found"),
|
||||
det_thresh: float = Body(0.5,title="Face Detection Threshold"),
|
||||
det_maxnum: int = Body(0,title="Maximum number of faces to detect (0 is unlimited)"),
|
||||
select_source: int = Body(0,title="Select Source, 0 - Image, 1 - Face Model"),
|
||||
face_model: str = Body("None",title="Filename of the face model (from 'models/reactor/faces'), e.g. elena.safetensors")
|
||||
):
|
||||
s_image = api.decode_base64_to_image(source_image) if select_source == 0 else None
|
||||
s_image = api.decode_base64_to_image(source_image)
|
||||
t_image = api.decode_base64_to_image(target_image)
|
||||
|
||||
if t_image.mode == 'RGBA':
|
||||
_, _, _, alpha = t_image.split()
|
||||
else:
|
||||
alpha = None
|
||||
|
||||
sf_index = source_faces_index
|
||||
f_index = face_index
|
||||
gender_s = gender_source
|
||||
gender_t = gender_target
|
||||
restore_first_bool = True if restore_first == 1 else False
|
||||
mask_face = True if mask_face == 1 else False
|
||||
random_image = False if random_image == 0 else True
|
||||
upscale_force = False if upscale_force == 0 else True
|
||||
up_options = EnhancementOptions(do_restore_first=restore_first_bool, scale=scale, upscaler=get_upscaler(upscaler), upscale_visibility=upscale_visibility,face_restorer=get_face_restorer(face_restorer),restorer_visibility=restorer_visibility,codeformer_weight=codeformer_weight,upscale_force=upscale_force)
|
||||
det_options = DetectionOptions(det_thresh=det_thresh, det_maxnum=det_maxnum)
|
||||
up_options = EnhancementOptions(do_restore_first=restore_first_bool, scale=scale, upscaler=get_upscaler(upscaler), upscale_visibility=upscale_visibility,face_restorer=get_face_restorer(face_restorer),restorer_visibility=restorer_visibility,codeformer_weight=codeformer_weight)
|
||||
use_model = get_full_model(model)
|
||||
if use_model is None:
|
||||
Exception("Model not found")
|
||||
|
||||
args = [s_image, t_image, use_model, sf_index, f_index, up_options, gender_s, gender_t, True, True, device, mask_face, select_source, face_model, source_folder, None, random_image,det_options]
|
||||
# result,_,_ = pool.map(swap_face, *args)
|
||||
result,_,_ = await run_event(app,swap_face,*args)
|
||||
# result,_,_ = swap_face(s_image, t_image, use_model, sf_index, f_index, up_options, gender_s, gender_t, True, True, device, mask_face, select_source, face_model, source_folder, None, random_image,det_options)
|
||||
|
||||
if alpha is not None:
|
||||
result = result.convert("RGBA")
|
||||
result.putalpha(alpha)
|
||||
|
||||
result = swap_face(s_image, t_image, use_model, sf_index, f_index, up_options, gender_s, gender_t, True, True, device, mask_face, select_source, face_model)
|
||||
if save_to_file == 1:
|
||||
if result_file_path == "":
|
||||
result_file_path = default_file_path()
|
||||
try:
|
||||
file_format = os.path.split(result_file_path)[1].split(".")[1]
|
||||
result.save(result_file_path, format=file_format)
|
||||
result[0].save(result_file_path, format='PNG')
|
||||
logger.status("Result has been saved to: %s", result_file_path)
|
||||
except Exception as e:
|
||||
logger.error("Error while saving result: %s",e)
|
||||
return {"image": api.encode_pil_to_base64(result)}
|
||||
return {"image": api.encode_pil_to_base64(result[0])}
|
||||
|
||||
@app.get("/reactor/models")
|
||||
async def reactor_models():
|
||||
@ -182,23 +109,9 @@ def reactor_api(_: gr.Blocks, app: FastAPI):
|
||||
names = [upscaler.name for upscaler in shared.sd_upscalers]
|
||||
return {"upscalers": names}
|
||||
|
||||
@app.get("/reactor/facemodels")
|
||||
async def reactor_facemodels():
|
||||
facemodels = [os.path.split(model)[1].split(".")[0] for model in get_facemodels()]
|
||||
return {"facemodels": facemodels}
|
||||
|
||||
@app.post("/reactor/facemodels")
|
||||
async def reactor_facemodels_build(
|
||||
source_images: list[str] = Body([""],title="Source Face Image List"),
|
||||
name: str = Body("",title="Face Model Name"),
|
||||
compute_method: int = Body(0,title="Compute Method (Mean, Median, Mode)"),
|
||||
):
|
||||
images = [api.decode_base64_to_image(img) for img in source_images]
|
||||
blend_faces(images, name, compute_method, False, is_api=True)
|
||||
return {"facemodels": [os.path.split(model)[1].split(".")[0] for model in get_facemodels()]}
|
||||
|
||||
try:
|
||||
import modules.script_callbacks as script_callbacks
|
||||
|
||||
script_callbacks.on_app_started(reactor_api)
|
||||
except:
|
||||
pass
|
||||
|
||||
@ -1,6 +1,11 @@
|
||||
import os, glob
|
||||
import gradio as gr
|
||||
from PIL import Image
|
||||
try:
|
||||
import torch.cuda as cuda
|
||||
EP_is_visible = True if cuda.is_available() else False
|
||||
except:
|
||||
EP_is_visible = False
|
||||
|
||||
from typing import List
|
||||
|
||||
@ -14,44 +19,43 @@ from modules.processing import (
|
||||
)
|
||||
from modules.face_restoration import FaceRestoration
|
||||
from modules.images import save_image
|
||||
try:
|
||||
from modules.paths_internal import models_path
|
||||
except:
|
||||
try:
|
||||
from modules.paths import models_path
|
||||
except:
|
||||
model_path = os.path.abspath("models")
|
||||
|
||||
from reactor_ui import (
|
||||
ui_main,
|
||||
ui_upscale,
|
||||
ui_tools,
|
||||
ui_settings,
|
||||
ui_detection,
|
||||
)
|
||||
from scripts.reactor_logger import logger
|
||||
from scripts.reactor_swapper import (
|
||||
EnhancementOptions,
|
||||
DetectionOptions,
|
||||
swap_face,
|
||||
check_process_halt,
|
||||
reset_messaged,
|
||||
build_face_model
|
||||
)
|
||||
from scripts.reactor_version import version_flag, app_title
|
||||
from scripts.console_log_patch import apply_logging_patch
|
||||
from scripts.reactor_helpers import (
|
||||
make_grid,
|
||||
set_Device,
|
||||
get_SDNEXT,
|
||||
)
|
||||
from scripts.reactor_globals import SWAPPER_MODELS_PATH #, DEVICE, DEVICE_LIST
|
||||
|
||||
def IA_cap(cond: bool, label: str=""):
|
||||
return None
|
||||
|
||||
try:
|
||||
from modules.ui_components import InputAccordion
|
||||
NO_IA = False
|
||||
except:
|
||||
NO_IA = True
|
||||
InputAccordion = IA_cap
|
||||
from scripts.reactor_helpers import make_grid, get_image_path, set_Device, get_model_names, get_facemodels
|
||||
from scripts.reactor_globals import DEVICE, DEVICE_LIST
|
||||
|
||||
|
||||
def check_old_webui():
|
||||
return NO_IA
|
||||
MODELS_PATH = None
|
||||
|
||||
def get_models():
|
||||
global MODELS_PATH
|
||||
models_path_init = os.path.join(models_path, "insightface/*")
|
||||
models = glob.glob(models_path_init)
|
||||
models = [x for x in models if x.endswith(".onnx") or x.endswith(".pth")]
|
||||
models_names = []
|
||||
for model in models:
|
||||
model_path = os.path.split(model)
|
||||
if MODELS_PATH is None:
|
||||
MODELS_PATH = model_path[0]
|
||||
model_name = model_path[1]
|
||||
models_names.append(model_name)
|
||||
return models_names
|
||||
|
||||
|
||||
class FaceSwapScript(scripts.Script):
|
||||
@ -62,36 +66,239 @@ class FaceSwapScript(scripts.Script):
|
||||
return scripts.AlwaysVisible
|
||||
|
||||
def ui(self, is_img2img):
|
||||
with (
|
||||
gr.Accordion(f"{app_title}", open=False) if check_old_webui() else InputAccordion(False, label=f"{app_title}") as enable
|
||||
):
|
||||
with gr.Accordion(f"{app_title}", open=False):
|
||||
|
||||
# SD.Next or A1111 1.52:
|
||||
if get_SDNEXT() or check_old_webui():
|
||||
enable = gr.Checkbox(False, label="Enable")
|
||||
|
||||
# enable = gr.Checkbox(False, label="Enable", info=f"The Fast and Simple FaceSwap Extension - {version_flag}")
|
||||
gr.Markdown(f"<sup>The Fast and Simple FaceSwap Extension - {version_flag}</sup>")
|
||||
def update_fm_list(selected: str):
|
||||
return gr.Dropdown.update(
|
||||
value=selected, choices=get_model_names(get_facemodels)
|
||||
)
|
||||
def update_upscalers_list(selected: str):
|
||||
return gr.Dropdown.update(
|
||||
value=selected, choices=[upscaler.name for upscaler in shared.sd_upscalers]
|
||||
)
|
||||
def update_models_list(selected: str):
|
||||
return gr.Dropdown.update(
|
||||
value=selected, choices=get_models()
|
||||
)
|
||||
|
||||
# TAB MAIN
|
||||
msgs: dict = {
|
||||
"extra_multiple_source": "",
|
||||
}
|
||||
img, imgs, selected_tab, select_source, face_model, source_folder, save_original, mask_face, source_faces_index, gender_source, faces_index, gender_target, face_restorer_name, face_restorer_visibility, codeformer_weight, swap_in_source, swap_in_generated, random_image = ui_main.show(is_img2img=is_img2img, **msgs)
|
||||
|
||||
# TAB DETECTION
|
||||
det_thresh, det_maxnum = ui_detection.show()
|
||||
with gr.Tab("Main"):
|
||||
with gr.Column():
|
||||
img = gr.Image(
|
||||
type="pil",
|
||||
label="Source Image",
|
||||
)
|
||||
# face_model = gr.File(
|
||||
# file_types=[".safetensors"],
|
||||
# label="Face Model",
|
||||
# show_label=True,
|
||||
# )
|
||||
enable = gr.Checkbox(False, label="Enable", info=f"The Fast and Simple FaceSwap Extension - {version_flag}")
|
||||
gr.Markdown("<br>")
|
||||
with gr.Row():
|
||||
select_source = gr.Radio(
|
||||
["Image","Face Model"],
|
||||
value="Image",
|
||||
label="Select Source",
|
||||
type="index",
|
||||
scale=1,
|
||||
)
|
||||
face_models = get_model_names(get_facemodels)
|
||||
face_model = gr.Dropdown(
|
||||
choices=face_models,
|
||||
label="Choose Face Model",
|
||||
value="None",
|
||||
scale=2,
|
||||
)
|
||||
fm_update = gr.Button(
|
||||
value="🔄",
|
||||
variant="tool",
|
||||
)
|
||||
fm_update.click(
|
||||
update_fm_list,
|
||||
inputs=[face_model],
|
||||
outputs=[face_model],
|
||||
)
|
||||
setattr(face_model, "do_not_save_to_config", True)
|
||||
save_original = gr.Checkbox(
|
||||
False,
|
||||
label="Save Original",
|
||||
info="Save the original image(s) made before swapping; If you use \"img2img\" - this option will affect with \"Swap in generated\" only"
|
||||
)
|
||||
mask_face = gr.Checkbox(
|
||||
False,
|
||||
label="Face Mask Correction",
|
||||
info="Apply this option if you see some pixelation around face contours"
|
||||
)
|
||||
gr.Markdown("<br>")
|
||||
gr.Markdown("Source Image (above):")
|
||||
with gr.Row():
|
||||
source_faces_index = gr.Textbox(
|
||||
value="0",
|
||||
placeholder="Which face(s) to use as Source (comma separated)",
|
||||
label="Comma separated face number(s); Example: 0,2,1",
|
||||
)
|
||||
gender_source = gr.Radio(
|
||||
["No", "Female Only", "Male Only"],
|
||||
value="No",
|
||||
label="Gender Detection (Source)",
|
||||
type="index",
|
||||
)
|
||||
gr.Markdown("<br>")
|
||||
gr.Markdown("Target Image (result):")
|
||||
with gr.Row():
|
||||
faces_index = gr.Textbox(
|
||||
value="0",
|
||||
placeholder="Which face(s) to Swap into Target (comma separated)",
|
||||
label="Comma separated face number(s); Example: 1,0,2",
|
||||
)
|
||||
gender_target = gr.Radio(
|
||||
["No", "Female Only", "Male Only"],
|
||||
value="No",
|
||||
label="Gender Detection (Target)",
|
||||
type="index",
|
||||
)
|
||||
gr.Markdown("<br>")
|
||||
with gr.Row():
|
||||
face_restorer_name = gr.Radio(
|
||||
label="Restore Face",
|
||||
choices=["None"] + [x.name() for x in shared.face_restorers],
|
||||
value=shared.face_restorers[0].name(),
|
||||
type="value",
|
||||
)
|
||||
with gr.Column():
|
||||
face_restorer_visibility = gr.Slider(
|
||||
0, 1, 1, step=0.1, label="Restore Face Visibility"
|
||||
)
|
||||
codeformer_weight = gr.Slider(
|
||||
0, 1, 0.5, step=0.1, label="CodeFormer Weight", info="0 = maximum effect, 1 = minimum effect"
|
||||
)
|
||||
gr.Markdown("<br>")
|
||||
swap_in_source = gr.Checkbox(
|
||||
False,
|
||||
label="Swap in source image",
|
||||
visible=is_img2img,
|
||||
)
|
||||
swap_in_generated = gr.Checkbox(
|
||||
True,
|
||||
label="Swap in generated image",
|
||||
visible=is_img2img,
|
||||
)
|
||||
|
||||
# TAB UPSCALE
|
||||
restore_first, upscaler_name, upscaler_scale, upscaler_visibility, upscale_force = ui_upscale.show()
|
||||
with gr.Tab("Upscale"):
|
||||
restore_first = gr.Checkbox(
|
||||
True,
|
||||
label="1. Restore Face -> 2. Upscale (-Uncheck- if you want vice versa)",
|
||||
info="Postprocessing Order"
|
||||
)
|
||||
with gr.Row():
|
||||
upscaler_name = gr.Dropdown(
|
||||
choices=[upscaler.name for upscaler in shared.sd_upscalers],
|
||||
label="Upscaler",
|
||||
value="None",
|
||||
info="Won't scale if you choose -Swap in Source- via img2img, only 1x-postprocessing will affect (texturing, denoising, restyling etc.)"
|
||||
)
|
||||
upscalers_update = gr.Button(
|
||||
value="🔄",
|
||||
variant="tool",
|
||||
)
|
||||
upscalers_update.click(
|
||||
update_upscalers_list,
|
||||
inputs=[upscaler_name],
|
||||
outputs=[upscaler_name],
|
||||
)
|
||||
gr.Markdown("<br>")
|
||||
with gr.Row():
|
||||
upscaler_scale = gr.Slider(1, 8, 1, step=0.1, label="Scale by")
|
||||
upscaler_visibility = gr.Slider(
|
||||
0, 1, 1, step=0.1, label="Upscaler Visibility (if scale = 1)"
|
||||
)
|
||||
|
||||
# TAB TOOLS
|
||||
ui_tools.show()
|
||||
with gr.Tab("Tools 🆕"):
|
||||
with gr.Tab("Face Models"):
|
||||
gr.Markdown("Load an image containing one person, name it and click 'Build and Save'")
|
||||
img_fm = gr.Image(
|
||||
type="pil",
|
||||
label="Load Image to build Face Model",
|
||||
)
|
||||
with gr.Row(equal_height=True):
|
||||
fm_name = gr.Textbox(
|
||||
value="",
|
||||
placeholder="Please type any name (e.g. Elena)",
|
||||
label="Face Model Name",
|
||||
)
|
||||
save_fm_btn = gr.Button("Build and Save")
|
||||
save_fm = gr.Markdown("You can find saved models in 'models/reactor/faces'")
|
||||
save_fm_btn.click(
|
||||
build_face_model,
|
||||
inputs=[img_fm, fm_name],
|
||||
outputs=[save_fm],
|
||||
)
|
||||
|
||||
# TAB SETTINGS
|
||||
model, device, console_logging_level, source_hash_check, target_hash_check = ui_settings.show()
|
||||
with gr.Tab("Settings"):
|
||||
models = get_models()
|
||||
with gr.Row(visible=EP_is_visible):
|
||||
device = gr.Radio(
|
||||
label="Execution Provider",
|
||||
choices=DEVICE_LIST,
|
||||
value=DEVICE,
|
||||
type="value",
|
||||
info="If you already run 'Generate' - RESTART is required to apply. Click 'Save', (A1111) Extensions Tab -> 'Apply and restart UI' or (SD.Next) close the Server and start it again",
|
||||
scale=2,
|
||||
)
|
||||
save_device_btn = gr.Button("Save", scale=0)
|
||||
save = gr.Markdown("", visible=EP_is_visible)
|
||||
setattr(device, "do_not_save_to_config", True)
|
||||
save_device_btn.click(
|
||||
set_Device,
|
||||
inputs=[device],
|
||||
outputs=[save],
|
||||
)
|
||||
with gr.Row():
|
||||
if len(models) == 0:
|
||||
logger.warning(
|
||||
"You should at least have one model in models directory, please read the doc here: https://github.com/Gourieff/sd-webui-reactor/"
|
||||
)
|
||||
model = gr.Dropdown(
|
||||
choices=models,
|
||||
label="Model not found, please download one and refresh the list"
|
||||
)
|
||||
else:
|
||||
model = gr.Dropdown(
|
||||
choices=models, label="Model", value=models[0]
|
||||
)
|
||||
models_update = gr.Button(
|
||||
value="🔄",
|
||||
variant="tool",
|
||||
)
|
||||
models_update.click(
|
||||
update_models_list,
|
||||
inputs=[model],
|
||||
outputs=[model],
|
||||
)
|
||||
console_logging_level = gr.Radio(
|
||||
["No log", "Minimum", "Default"],
|
||||
value="Minimum",
|
||||
label="Console Log Level",
|
||||
type="index"
|
||||
)
|
||||
gr.Markdown("<br>")
|
||||
with gr.Row():
|
||||
source_hash_check = gr.Checkbox(
|
||||
True,
|
||||
label="Source Image Hash Check",
|
||||
info="Recommended to keep it ON. Processing is faster when Source Image is the same."
|
||||
)
|
||||
target_hash_check = gr.Checkbox(
|
||||
False,
|
||||
label="Target Image Hash Check",
|
||||
info="Affects if you use Extras tab or img2img with only 'Swap in source image' on."
|
||||
)
|
||||
|
||||
gr.Markdown("<span style='display:block;text-align:right;padding:3px;font-size:0.666em;margin-bottom:-12px;'>by <a style='font-weight:normal' href='https://github.com/Gourieff' target='_blank'>Eugene Gourieff</a></span>")
|
||||
gr.Markdown("<span style='display:block;text-align:right;padding:3px;font-size:0.666em'>by Eugene Gourieff</span>")
|
||||
|
||||
return [
|
||||
img,
|
||||
@ -118,13 +325,6 @@ class FaceSwapScript(scripts.Script):
|
||||
mask_face,
|
||||
select_source,
|
||||
face_model,
|
||||
source_folder,
|
||||
imgs,
|
||||
random_image,
|
||||
upscale_force,
|
||||
det_thresh,
|
||||
det_maxnum,
|
||||
selected_tab,
|
||||
]
|
||||
|
||||
|
||||
@ -145,21 +345,13 @@ class FaceSwapScript(scripts.Script):
|
||||
@property
|
||||
def enhancement_options(self) -> EnhancementOptions:
|
||||
return EnhancementOptions(
|
||||
do_restore_first=self.restore_first,
|
||||
do_restore_first = self.restore_first,
|
||||
scale=self.upscaler_scale,
|
||||
upscaler=self.upscaler,
|
||||
face_restorer=self.face_restorer,
|
||||
upscale_visibility=self.upscaler_visibility,
|
||||
restorer_visibility=self.face_restorer_visibility,
|
||||
codeformer_weight=self.codeformer_weight,
|
||||
upscale_force=self.upscale_force
|
||||
)
|
||||
|
||||
@property
|
||||
def detection_options(self) -> DetectionOptions:
|
||||
return DetectionOptions(
|
||||
det_thresh=self.det_thresh,
|
||||
det_maxnum=self.det_maxnum
|
||||
)
|
||||
|
||||
def process(
|
||||
@ -189,13 +381,6 @@ class FaceSwapScript(scripts.Script):
|
||||
mask_face,
|
||||
select_source,
|
||||
face_model,
|
||||
source_folder,
|
||||
imgs,
|
||||
random_image,
|
||||
upscale_force,
|
||||
det_thresh,
|
||||
det_maxnum,
|
||||
selected_tab,
|
||||
):
|
||||
self.enable = enable
|
||||
if self.enable:
|
||||
@ -206,11 +391,8 @@ class FaceSwapScript(scripts.Script):
|
||||
if check_process_halt():
|
||||
return
|
||||
|
||||
global SWAPPER_MODELS_PATH
|
||||
if selected_tab == "tab_single":
|
||||
self.source = img
|
||||
else:
|
||||
self.source = None
|
||||
global MODELS_PATH
|
||||
self.source = img
|
||||
self.face_restorer_name = face_restorer_name
|
||||
self.upscaler_scale = upscaler_scale
|
||||
self.upscaler_visibility = upscaler_visibility
|
||||
@ -219,7 +401,7 @@ class FaceSwapScript(scripts.Script):
|
||||
self.upscaler_name = upscaler_name
|
||||
self.swap_in_source = swap_in_source
|
||||
self.swap_in_generated = swap_in_generated
|
||||
self.model = os.path.join(SWAPPER_MODELS_PATH,model)
|
||||
self.model = os.path.join(MODELS_PATH,model)
|
||||
self.console_logging_level = console_logging_level
|
||||
self.gender_source = gender_source
|
||||
self.gender_target = gender_target
|
||||
@ -231,24 +413,15 @@ class FaceSwapScript(scripts.Script):
|
||||
self.mask_face = mask_face
|
||||
self.select_source = select_source
|
||||
self.face_model = face_model
|
||||
self.source_folder = source_folder
|
||||
if selected_tab == "tab_single":
|
||||
self.source_imgs = None
|
||||
else:
|
||||
self.source_imgs = imgs
|
||||
self.random_image = random_image
|
||||
self.upscale_force = upscale_force
|
||||
self.det_thresh=det_thresh
|
||||
self.det_maxnum=det_maxnum
|
||||
if self.gender_source is None or self.gender_source == "No":
|
||||
self.gender_source = 0
|
||||
if self.gender_target is None or self.gender_target == "No":
|
||||
self.gender_target = 0
|
||||
self.source_faces_index = [
|
||||
int(x) for x in source_faces_index.strip().replace(" ", "").strip(",").split(",") if x.isnumeric()
|
||||
int(x) for x in source_faces_index.strip(",").split(",") if x.isnumeric()
|
||||
]
|
||||
self.faces_index = [
|
||||
int(x) for x in faces_index.strip().replace(" ", "").strip(",").split(",") if x.isnumeric()
|
||||
int(x) for x in faces_index.strip(",").split(",") if x.isnumeric()
|
||||
]
|
||||
if len(self.source_faces_index) == 0:
|
||||
self.source_faces_index = [0]
|
||||
@ -262,32 +435,14 @@ class FaceSwapScript(scripts.Script):
|
||||
self.target_hash_check = False
|
||||
if self.mask_face is None:
|
||||
self.mask_face = False
|
||||
if self.random_image is None:
|
||||
self.random_image = False
|
||||
if self.upscale_force is None:
|
||||
self.upscale_force = False
|
||||
|
||||
if shared.state.job_count > 0:
|
||||
# logger.debug(f"Job count: {shared.state.job_count}")
|
||||
self.face_restorer_visibility = shared.opts.data['restorer_visibility'] if 'restorer_visibility' in shared.opts.data.keys() else face_restorer_visibility
|
||||
self.codeformer_weight = shared.opts.data['codeformer_weight'] if 'codeformer_weight' in shared.opts.data.keys() else codeformer_weight
|
||||
self.mask_face = shared.opts.data['mask_face'] if 'mask_face' in shared.opts.data.keys() else mask_face
|
||||
self.face_model = shared.opts.data['face_model'] if 'face_model' in shared.opts.data.keys() else face_model
|
||||
|
||||
logger.debug("*** Set Device")
|
||||
set_Device(self.device)
|
||||
|
||||
if (self.save_original is None or not self.save_original) and (self.select_source == 2 or self.source_imgs is not None):
|
||||
p.do_not_save_samples = True
|
||||
|
||||
if ((self.source is not None or self.source_imgs is not None) and self.select_source == 0) or ((self.face_model is not None and self.face_model != "None") and self.select_source == 1) or ((self.source_folder is not None and self.source_folder != "") and self.select_source == 2):
|
||||
if (self.source is not None and self.select_source == 0) or ((self.face_model is not None and self.face_model != "None") and self.select_source == 1):
|
||||
logger.debug("*** Log patch")
|
||||
apply_logging_patch(console_logging_level)
|
||||
|
||||
if isinstance(p, StableDiffusionProcessingImg2Img) and self.swap_in_source:
|
||||
|
||||
logger.debug("*** Check process")
|
||||
|
||||
logger.status("Working: source face index %s, target face index %s", self.source_faces_index, self.faces_index)
|
||||
|
||||
for i in range(len(p.init_images)):
|
||||
@ -308,10 +463,6 @@ class FaceSwapScript(scripts.Script):
|
||||
mask_face=self.mask_face,
|
||||
select_source=self.select_source,
|
||||
face_model = self.face_model,
|
||||
source_folder = None,
|
||||
source_imgs = None,
|
||||
random_image = False,
|
||||
detection_options=self.detection_options,
|
||||
)
|
||||
p.init_images[i] = result
|
||||
# result_path = get_image_path(p.init_images[i], p.outpath_samples, "", p.all_seeds[i], p.all_prompts[i], "txt", p=p, suffix="-swapped")
|
||||
@ -329,15 +480,13 @@ class FaceSwapScript(scripts.Script):
|
||||
def postprocess(self, p: StableDiffusionProcessing, processed: Processed, *args):
|
||||
if self.enable:
|
||||
|
||||
logger.debug("*** Check postprocess - before IF")
|
||||
logger.debug("*** Check postprocess")
|
||||
|
||||
reset_messaged()
|
||||
if check_process_halt():
|
||||
return
|
||||
|
||||
if self.save_original or ((self.select_source == 2 and self.source_folder is not None and self.source_folder != "") or (self.select_source == 0 and self.source_imgs is not None and self.source is None)):
|
||||
|
||||
logger.debug("*** Check postprocess - after IF")
|
||||
if self.save_original:
|
||||
|
||||
postprocess_run: bool = True
|
||||
|
||||
@ -348,13 +497,8 @@ class FaceSwapScript(scripts.Script):
|
||||
# result_info: List = processed.infotexts
|
||||
|
||||
if self.swap_in_generated:
|
||||
|
||||
logger.status("Working: source face index %s, target face index %s", self.source_faces_index, self.faces_index)
|
||||
|
||||
if self.source is not None:
|
||||
# self.source_folder = None
|
||||
self.source_imgs = None
|
||||
|
||||
# if self.source is not None:
|
||||
for i,(img,info) in enumerate(zip(orig_images, orig_infotexts)):
|
||||
if check_process_halt():
|
||||
postprocess_run = False
|
||||
@ -376,39 +520,16 @@ class FaceSwapScript(scripts.Script):
|
||||
mask_face=self.mask_face,
|
||||
select_source=self.select_source,
|
||||
face_model = self.face_model,
|
||||
source_folder = self.source_folder,
|
||||
source_imgs = self.source_imgs,
|
||||
random_image = self.random_image,
|
||||
detection_options=self.detection_options,
|
||||
)
|
||||
|
||||
if self.select_source == 2 or (self.select_source == 0 and self.source_imgs is not None and self.source is None):
|
||||
if len(result) > 0 and swapped > 0:
|
||||
# result_images.extend(result)
|
||||
if self.save_original:
|
||||
result_images.extend(result)
|
||||
else:
|
||||
result_images = result
|
||||
suffix = "-swapped"
|
||||
for i,x in enumerate(result):
|
||||
try:
|
||||
img_path = save_image(result[i], p.outpath_samples, "", p.all_seeds[0], p.all_prompts[0], "png", info=info, p=p, suffix=suffix)
|
||||
except:
|
||||
logger.error("Cannot save a result image - please, check SD WebUI Settings (Saving and Paths)")
|
||||
|
||||
elif len(result) == 0:
|
||||
logger.error("Cannot create a result image")
|
||||
|
||||
else:
|
||||
if result is not None and swapped > 0:
|
||||
result_images.append(result)
|
||||
suffix = "-swapped"
|
||||
try:
|
||||
img_path = save_image(result, p.outpath_samples, "", p.all_seeds[0], p.all_prompts[0], "png", info=info, p=p, suffix=suffix)
|
||||
except:
|
||||
logger.error("Cannot save a result image - please, check SD WebUI Settings (Saving and Paths)")
|
||||
elif result is None:
|
||||
logger.error("Cannot create a result image")
|
||||
if result is not None and swapped > 0:
|
||||
result_images.append(result)
|
||||
suffix = "-swapped"
|
||||
try:
|
||||
img_path = save_image(result, p.outpath_samples, "", p.all_seeds[0], p.all_prompts[0], "png",info=info, p=p, suffix=suffix)
|
||||
except:
|
||||
logger.error("Cannot save a result image - please, check SD WebUI Settings (Saving and Paths)")
|
||||
elif result is None:
|
||||
logger.error("Cannot create a result image")
|
||||
|
||||
# if len(output) != 0:
|
||||
# split_fullfn = os.path.splitext(img_path[0])
|
||||
@ -427,28 +548,13 @@ class FaceSwapScript(scripts.Script):
|
||||
processed.images = result_images
|
||||
# processed.infotexts = result_info
|
||||
|
||||
elif self.select_source == 0 and self.source is not None and self.source_imgs is not None:
|
||||
|
||||
logger.debug("*** Check postprocess - after ELIF")
|
||||
|
||||
if self.result is not None:
|
||||
orig_infotexts : List[str] = processed.infotexts[processed.index_of_first_image:]
|
||||
processed.images = [self.result]
|
||||
try:
|
||||
img_path = save_image(self.result, p.outpath_samples, "", p.all_seeds[0], p.all_prompts[0], "png", info=orig_infotexts[0], p=p, suffix="")
|
||||
except:
|
||||
logger.error("Cannot save a result image - please, check SD WebUI Settings (Saving and Paths)")
|
||||
else:
|
||||
logger.error("Cannot create a result image")
|
||||
|
||||
|
||||
def postprocess_batch(self, p, *args, **kwargs):
|
||||
if self.enable and not self.save_original:
|
||||
logger.debug("*** Check postprocess_batch")
|
||||
images = kwargs["images"]
|
||||
|
||||
def postprocess_image(self, p, script_pp: scripts.PostprocessImageArgs, *args):
|
||||
if self.enable and self.swap_in_generated and not self.save_original and ((self.select_source == 0 and self.source is not None) or self.select_source == 1):
|
||||
if self.enable and self.swap_in_generated and not self.save_original:
|
||||
|
||||
logger.debug("*** Check postprocess_image")
|
||||
|
||||
@ -477,12 +583,7 @@ class FaceSwapScript(scripts.Script):
|
||||
mask_face=self.mask_face,
|
||||
select_source=self.select_source,
|
||||
face_model = self.face_model,
|
||||
source_folder = None,
|
||||
source_imgs = None,
|
||||
random_image = False,
|
||||
detection_options=self.detection_options,
|
||||
)
|
||||
self.result = result
|
||||
try:
|
||||
pp = scripts_postprocessing.PostprocessedImage(result)
|
||||
pp.info = {}
|
||||
@ -503,38 +604,199 @@ class FaceSwapScriptExtras(scripts_postprocessing.ScriptPostprocessing):
|
||||
order = 20000
|
||||
|
||||
def ui(self):
|
||||
with (
|
||||
gr.Accordion(f"{app_title}", open=False) if check_old_webui() else InputAccordion(False, label=f"{app_title}") as enable
|
||||
):
|
||||
# with ui_components.InputAccordion(False, label=f"{app_title}") as enable:
|
||||
# with gr.Accordion(f"{app_title}", open=False):
|
||||
with gr.Accordion(f"{app_title}", open=False):
|
||||
|
||||
# SD.Next or A1111 1.52:
|
||||
if get_SDNEXT() or check_old_webui():
|
||||
enable = gr.Checkbox(False, label="Enable")
|
||||
|
||||
# enable = gr.Checkbox(False, label="Enable", info=f"The Fast and Simple FaceSwap Extension - {version_flag}")
|
||||
gr.Markdown(f"<span style='display:block;font-size:0.75em;margin-bottom:-24px;'>The Fast and Simple FaceSwap Extension - {version_flag}</span>")
|
||||
def update_fm_list(selected: str):
|
||||
return gr.Dropdown.update(
|
||||
value=selected, choices=get_model_names(get_facemodels)
|
||||
)
|
||||
def update_upscalers_list(selected: str):
|
||||
return gr.Dropdown.update(
|
||||
value=selected, choices=[upscaler.name for upscaler in shared.sd_upscalers]
|
||||
)
|
||||
def update_models_list(selected: str):
|
||||
return gr.Dropdown.update(
|
||||
value=selected, choices=get_models()
|
||||
)
|
||||
|
||||
# TAB MAIN
|
||||
msgs: dict = {
|
||||
"extra_multiple_source": "",
|
||||
}
|
||||
img, imgs, selected_tab, select_source, face_model, source_folder, save_original, mask_face, source_faces_index, gender_source, faces_index, gender_target, face_restorer_name, face_restorer_visibility, codeformer_weight, swap_in_source, swap_in_generated, random_image = ui_main.show(is_img2img=False, show_br=False, **msgs)
|
||||
|
||||
# TAB DETECTION
|
||||
det_thresh, det_maxnum = ui_detection.show()
|
||||
with gr.Tab("Main"):
|
||||
with gr.Column():
|
||||
img = gr.Image(type="pil")
|
||||
enable = gr.Checkbox(False, label="Enable", info=f"The Fast and Simple FaceSwap Extension - {version_flag}")
|
||||
# gr.Markdown("<br>")
|
||||
with gr.Row():
|
||||
select_source = gr.Radio(
|
||||
["Image","Face Model"],
|
||||
value="Image",
|
||||
label="Select Source",
|
||||
type="index",
|
||||
scale=1,
|
||||
)
|
||||
face_models = get_model_names(get_facemodels)
|
||||
face_model = gr.Dropdown(
|
||||
choices=face_models,
|
||||
label="Choose Face Model",
|
||||
value="None",
|
||||
scale=2,
|
||||
)
|
||||
fm_update = gr.Button(
|
||||
value="🔄",
|
||||
variant="tool",
|
||||
)
|
||||
fm_update.click(
|
||||
update_fm_list,
|
||||
inputs=[face_model],
|
||||
outputs=[face_model],
|
||||
)
|
||||
setattr(face_model, "do_not_save_to_config", True)
|
||||
mask_face = gr.Checkbox(
|
||||
False,
|
||||
label="Face Mask Correction",
|
||||
info="Apply this option if you see some pixelation around face contours"
|
||||
)
|
||||
gr.Markdown("Source Image (above):")
|
||||
with gr.Row():
|
||||
source_faces_index = gr.Textbox(
|
||||
value="0",
|
||||
placeholder="Which face(s) to use as Source (comma separated)",
|
||||
label="Comma separated face number(s); Example: 0,2,1",
|
||||
)
|
||||
gender_source = gr.Radio(
|
||||
["No", "Female Only", "Male Only"],
|
||||
value="No",
|
||||
label="Gender Detection (Source)",
|
||||
type="index",
|
||||
)
|
||||
gr.Markdown("Target Image (result):")
|
||||
with gr.Row():
|
||||
faces_index = gr.Textbox(
|
||||
value="0",
|
||||
placeholder="Which face(s) to Swap into Target (comma separated)",
|
||||
label="Comma separated face number(s); Example: 1,0,2",
|
||||
)
|
||||
gender_target = gr.Radio(
|
||||
["No", "Female Only", "Male Only"],
|
||||
value="No",
|
||||
label="Gender Detection (Target)",
|
||||
type="index",
|
||||
)
|
||||
with gr.Row():
|
||||
face_restorer_name = gr.Radio(
|
||||
label="Restore Face",
|
||||
choices=["None"] + [x.name() for x in shared.face_restorers],
|
||||
value=shared.face_restorers[0].name(),
|
||||
type="value",
|
||||
)
|
||||
with gr.Column():
|
||||
face_restorer_visibility = gr.Slider(
|
||||
0, 1, 1, step=0.1, label="Restore Face Visibility"
|
||||
)
|
||||
codeformer_weight = gr.Slider(
|
||||
0, 1, 0.5, step=0.1, label="CodeFormer Weight", info="0 = maximum effect, 1 = minimum effect"
|
||||
)
|
||||
|
||||
# TAB UPSCALE
|
||||
restore_first, upscaler_name, upscaler_scale, upscaler_visibility, upscale_force = ui_upscale.show(show_br=False)
|
||||
with gr.Tab("Upscale"):
|
||||
restore_first = gr.Checkbox(
|
||||
True,
|
||||
label="1. Restore Face -> 2. Upscale (-Uncheck- if you want vice versa)",
|
||||
info="Postprocessing Order"
|
||||
)
|
||||
with gr.Row():
|
||||
upscaler_name = gr.Dropdown(
|
||||
choices=[upscaler.name for upscaler in shared.sd_upscalers],
|
||||
label="Upscaler",
|
||||
value="None",
|
||||
info="Won't scale if you choose -Swap in Source- via img2img, only 1x-postprocessing will affect (texturing, denoising, restyling etc.)"
|
||||
)
|
||||
upscalers_update = gr.Button(
|
||||
value="🔄",
|
||||
variant="tool",
|
||||
)
|
||||
upscalers_update.click(
|
||||
update_upscalers_list,
|
||||
inputs=[upscaler_name],
|
||||
outputs=[upscaler_name],
|
||||
)
|
||||
with gr.Row():
|
||||
upscaler_scale = gr.Slider(1, 8, 1, step=0.1, label="Scale by")
|
||||
upscaler_visibility = gr.Slider(
|
||||
0, 1, 1, step=0.1, label="Upscaler Visibility (if scale = 1)"
|
||||
)
|
||||
|
||||
# TAB TOOLS
|
||||
ui_tools.show()
|
||||
with gr.Tab("Tools 🆕"):
|
||||
with gr.Tab("Face Models"):
|
||||
gr.Markdown("Load an image containing one person, name it and click 'Build and Save'")
|
||||
img_fm = gr.Image(
|
||||
type="pil",
|
||||
label="Load Image to build Face Model",
|
||||
)
|
||||
with gr.Row(equal_height=True):
|
||||
fm_name = gr.Textbox(
|
||||
value="",
|
||||
placeholder="Please type any name (e.g. Elena)",
|
||||
label="Face Model Name",
|
||||
)
|
||||
save_fm_btn = gr.Button("Build and Save")
|
||||
save_fm = gr.Markdown("You can find saved models in 'models/reactor/faces'")
|
||||
save_fm_btn.click(
|
||||
build_face_model,
|
||||
inputs=[img_fm, fm_name],
|
||||
outputs=[save_fm],
|
||||
)
|
||||
|
||||
# TAB SETTINGS
|
||||
model, device, console_logging_level, source_hash_check, target_hash_check = ui_settings.show(hash_check_block=False)
|
||||
with gr.Tab("Settings"):
|
||||
models = get_models()
|
||||
with gr.Row(visible=EP_is_visible):
|
||||
device = gr.Radio(
|
||||
label="Execution Provider",
|
||||
choices=DEVICE_LIST,
|
||||
value=DEVICE,
|
||||
type="value",
|
||||
info="If you already run 'Generate' - RESTART is required to apply. Click 'Save', (A1111) Extensions Tab -> 'Apply and restart UI' or (SD.Next) close the Server and start it again",
|
||||
scale=2,
|
||||
)
|
||||
save_device_btn = gr.Button("Save", scale=0)
|
||||
save = gr.Markdown("", visible=EP_is_visible)
|
||||
setattr(device, "do_not_save_to_config", True)
|
||||
save_device_btn.click(
|
||||
set_Device,
|
||||
inputs=[device],
|
||||
outputs=[save],
|
||||
)
|
||||
with gr.Row():
|
||||
if len(models) == 0:
|
||||
logger.warning(
|
||||
"You should at least have one model in models directory, please read the doc here: https://github.com/Gourieff/sd-webui-reactor/"
|
||||
)
|
||||
model = gr.Dropdown(
|
||||
choices=models,
|
||||
label="Model not found, please download one and refresh the list",
|
||||
)
|
||||
else:
|
||||
model = gr.Dropdown(
|
||||
choices=models, label="Model", value=models[0]
|
||||
)
|
||||
models_update = gr.Button(
|
||||
value="🔄",
|
||||
variant="tool",
|
||||
)
|
||||
models_update.click(
|
||||
update_models_list,
|
||||
inputs=[model],
|
||||
outputs=[model],
|
||||
)
|
||||
console_logging_level = gr.Radio(
|
||||
["No log", "Minimum", "Default"],
|
||||
value="Minimum",
|
||||
label="Console Log Level",
|
||||
type="index",
|
||||
)
|
||||
|
||||
gr.Markdown("<span style='display:block;text-align:right;padding-right:3px;font-size:0.666em;margin: -9px 0'>by <a style='font-weight:normal' href='https://github.com/Gourieff' target='_blank'>Eugene Gourieff</a></span>")
|
||||
gr.Markdown("<span style='display:block;text-align:right;padding-right:3px;font-size:0.666em;margin: -9px 0'>by Eugene Gourieff</span>")
|
||||
|
||||
args = {
|
||||
'img': img,
|
||||
@ -556,13 +818,6 @@ class FaceSwapScriptExtras(scripts_postprocessing.ScriptPostprocessing):
|
||||
'mask_face': mask_face,
|
||||
'select_source': select_source,
|
||||
'face_model': face_model,
|
||||
'source_folder': source_folder,
|
||||
'imgs': imgs,
|
||||
'random_image': random_image,
|
||||
'upscale_force': upscale_force,
|
||||
'det_thresh': det_thresh,
|
||||
'det_maxnum': det_maxnum,
|
||||
'selected_tab': selected_tab,
|
||||
}
|
||||
return args
|
||||
|
||||
@ -590,14 +845,6 @@ class FaceSwapScriptExtras(scripts_postprocessing.ScriptPostprocessing):
|
||||
upscale_visibility=self.upscaler_visibility,
|
||||
restorer_visibility=self.face_restorer_visibility,
|
||||
codeformer_weight=self.codeformer_weight,
|
||||
upscale_force=self.upscale_force,
|
||||
)
|
||||
|
||||
@property
|
||||
def detection_options(self) -> DetectionOptions:
|
||||
return DetectionOptions(
|
||||
det_thresh=self.det_thresh,
|
||||
det_maxnum=self.det_maxnum
|
||||
)
|
||||
|
||||
def process(self, pp: scripts_postprocessing.PostprocessedImage, **args):
|
||||
@ -606,18 +853,15 @@ class FaceSwapScriptExtras(scripts_postprocessing.ScriptPostprocessing):
|
||||
if check_process_halt():
|
||||
return
|
||||
|
||||
global SWAPPER_MODELS_PATH
|
||||
if args['selected_tab'] == "tab_single":
|
||||
self.source = args['img']
|
||||
else:
|
||||
self.source = None
|
||||
global MODELS_PATH
|
||||
self.source = args['img']
|
||||
self.face_restorer_name = args['face_restorer_name']
|
||||
self.upscaler_scale = args['upscaler_scale']
|
||||
self.upscaler_visibility = args['upscaler_visibility']
|
||||
self.face_restorer_visibility = args['face_restorer_visibility']
|
||||
self.restore_first = args['restore_first']
|
||||
self.upscaler_name = args['upscaler_name']
|
||||
self.model = os.path.join(SWAPPER_MODELS_PATH, args['model'])
|
||||
self.model = os.path.join(MODELS_PATH, args['model'])
|
||||
self.console_logging_level = args['console_logging_level']
|
||||
self.gender_source = args['gender_source']
|
||||
self.gender_target = args['gender_target']
|
||||
@ -626,15 +870,6 @@ class FaceSwapScriptExtras(scripts_postprocessing.ScriptPostprocessing):
|
||||
self.mask_face = args['mask_face']
|
||||
self.select_source = args['select_source']
|
||||
self.face_model = args['face_model']
|
||||
self.source_folder = args['source_folder']
|
||||
if args['selected_tab'] == "tab_single":
|
||||
self.source_imgs = None
|
||||
else:
|
||||
self.source_imgs = args['imgs']
|
||||
self.random_image = args['random_image']
|
||||
self.upscale_force = args['upscale_force']
|
||||
self.det_thresh = args['det_thresh']
|
||||
self.det_maxnum = args['det_maxnum']
|
||||
if self.gender_source is None or self.gender_source == "No":
|
||||
self.gender_source = 0
|
||||
if self.gender_target is None or self.gender_target == "No":
|
||||
@ -651,10 +886,6 @@ class FaceSwapScriptExtras(scripts_postprocessing.ScriptPostprocessing):
|
||||
self.faces_index = [0]
|
||||
if self.mask_face is None:
|
||||
self.mask_face = False
|
||||
if self.random_image is None:
|
||||
self.random_image = False
|
||||
if self.upscale_force is None:
|
||||
self.upscale_force = False
|
||||
|
||||
current_job_number = shared.state.job_no + 1
|
||||
job_count = shared.state.job_count
|
||||
@ -663,28 +894,10 @@ class FaceSwapScriptExtras(scripts_postprocessing.ScriptPostprocessing):
|
||||
|
||||
set_Device(self.device)
|
||||
|
||||
logger.debug("We're here: process() 1")
|
||||
|
||||
if (self.source is not None and self.select_source == 0) or ((self.face_model is not None and self.face_model != "None") and self.select_source == 1) or ((self.source_folder is not None and self.source_folder != "") and self.select_source == 2) or ((self.source_imgs is not None and self.source is None) and self.select_source == 0):
|
||||
|
||||
logger.debug("We're here: process() 2")
|
||||
|
||||
if self.source is not None and self.select_source == 0:
|
||||
self.source_imgs = None
|
||||
|
||||
if (self.source is not None and self.select_source == 0) or ((self.face_model is not None and self.face_model != "None") and self.select_source == 1):
|
||||
apply_logging_patch(self.console_logging_level)
|
||||
logger.status("Working: source face index %s, target face index %s", self.source_faces_index, self.faces_index)
|
||||
# if self.select_source != 2:
|
||||
image: Image.Image = pp.image
|
||||
|
||||
# Extract alpha channel
|
||||
logger.debug(f"image = {image}")
|
||||
if image.mode == 'RGBA':
|
||||
_, _, _, alpha = image.split()
|
||||
else:
|
||||
alpha = None
|
||||
logger.debug(f"alpha = {alpha}")
|
||||
|
||||
result, output, swapped = swap_face(
|
||||
self.source,
|
||||
image,
|
||||
@ -700,40 +913,12 @@ class FaceSwapScriptExtras(scripts_postprocessing.ScriptPostprocessing):
|
||||
mask_face=self.mask_face,
|
||||
select_source=self.select_source,
|
||||
face_model=self.face_model,
|
||||
source_folder=self.source_folder,
|
||||
source_imgs=self.source_imgs,
|
||||
random_image=self.random_image,
|
||||
detection_options=self.detection_options,
|
||||
)
|
||||
if self.select_source == 2 or (self.select_source == 0 and self.source_imgs is not None and self.source is None):
|
||||
if len(result) > 0 and swapped > 0:
|
||||
image = result[0]
|
||||
if len(result) > 1:
|
||||
if hasattr(pp, 'extra_images'):
|
||||
image = result[0]
|
||||
pp.extra_images.extend(result[1:])
|
||||
else:
|
||||
grid = make_grid(result)
|
||||
result.insert(0, grid)
|
||||
image = grid
|
||||
pp.info["ReActor"] = True
|
||||
pp.image = image
|
||||
logger.status("---Done!---")
|
||||
else:
|
||||
logger.error("Cannot create a result image")
|
||||
else:
|
||||
try:
|
||||
pp.info["ReActor"] = True
|
||||
|
||||
if alpha is not None:
|
||||
logger.debug(f"result = {result}")
|
||||
result = result.convert("RGBA")
|
||||
result.putalpha(alpha)
|
||||
logger.debug(f"result_alpha = {result}")
|
||||
|
||||
pp.image = result
|
||||
logger.status("---Done!---")
|
||||
except Exception:
|
||||
logger.error("Cannot create a result image")
|
||||
try:
|
||||
pp.info["ReActor"] = True
|
||||
pp.image = result
|
||||
logger.status("---Done!---")
|
||||
except Exception:
|
||||
logger.error("Cannot create a result image")
|
||||
else:
|
||||
logger.error("Please provide a source face")
|
||||
|
||||
@ -14,12 +14,9 @@ BASE_PATH = os.path.join(Path(__file__).parents[1])
|
||||
DEVICE_LIST: list = ["CPU", "CUDA"]
|
||||
|
||||
MODELS_PATH = models_path
|
||||
SWAPPER_MODELS_PATH = os.path.join(MODELS_PATH, "insightface")
|
||||
REACTOR_MODELS_PATH = os.path.join(MODELS_PATH, "reactor")
|
||||
REACTOR_MODELS_PATH = os.path.join(models_path, "reactor")
|
||||
FACE_MODELS_PATH = os.path.join(REACTOR_MODELS_PATH, "faces")
|
||||
|
||||
IS_SDNEXT = False
|
||||
|
||||
if not os.path.exists(REACTOR_MODELS_PATH):
|
||||
os.makedirs(REACTOR_MODELS_PATH)
|
||||
if not os.path.exists(FACE_MODELS_PATH):
|
||||
|
||||
@ -1,4 +1,4 @@
|
||||
import os, glob, random
|
||||
import os, glob
|
||||
from collections import Counter
|
||||
from PIL import Image
|
||||
from math import isqrt, ceil
|
||||
@ -11,17 +11,7 @@ from insightface.app.common import Face
|
||||
|
||||
from modules.images import FilenameGenerator, get_next_sequence_number
|
||||
from modules import shared, script_callbacks
|
||||
from scripts.reactor_globals import DEVICE, BASE_PATH, FACE_MODELS_PATH, IS_SDNEXT
|
||||
|
||||
try:
|
||||
from modules.paths_internal import models_path
|
||||
except:
|
||||
try:
|
||||
from modules.paths import models_path
|
||||
except:
|
||||
model_path = os.path.abspath("models")
|
||||
|
||||
MODELS_PATH = None
|
||||
from scripts.reactor_globals import DEVICE, BASE_PATH, FACE_MODELS_PATH
|
||||
|
||||
def set_Device(value):
|
||||
global DEVICE
|
||||
@ -33,14 +23,6 @@ def get_Device():
|
||||
global DEVICE
|
||||
return DEVICE
|
||||
|
||||
def set_SDNEXT():
|
||||
global IS_SDNEXT
|
||||
IS_SDNEXT = True
|
||||
|
||||
def get_SDNEXT():
|
||||
global IS_SDNEXT
|
||||
return IS_SDNEXT
|
||||
|
||||
def make_grid(image_list: List):
|
||||
|
||||
# Count the occurrences of each image size in the image_list
|
||||
@ -173,20 +155,6 @@ def save_face_model(face: Face, filename: str) -> None:
|
||||
except Exception as e:
|
||||
print(f"Error: {e}")
|
||||
|
||||
def get_models():
|
||||
global MODELS_PATH
|
||||
models_path_init = os.path.join(models_path, "insightface/*")
|
||||
models = glob.glob(models_path_init)
|
||||
models = [x for x in models if x.endswith(".onnx") or x.endswith(".pth")]
|
||||
models_names = []
|
||||
for model in models:
|
||||
model_path = os.path.split(model)
|
||||
if MODELS_PATH is None:
|
||||
MODELS_PATH = model_path[0]
|
||||
model_name = model_path[1]
|
||||
models_names.append(model_name)
|
||||
return models_names
|
||||
|
||||
def load_face_model(filename: str):
|
||||
face = {}
|
||||
model_path = os.path.join(FACE_MODELS_PATH, filename)
|
||||
@ -203,36 +171,7 @@ def get_facemodels():
|
||||
|
||||
def get_model_names(get_models):
|
||||
models = get_models()
|
||||
names = []
|
||||
names = ["None"]
|
||||
for x in models:
|
||||
names.append(os.path.basename(x))
|
||||
# Sort ignoring case during sort but retain in output
|
||||
names.sort(key=str.lower)
|
||||
names.insert(0, "None")
|
||||
return names
|
||||
|
||||
def get_images_from_folder(path: str):
|
||||
files_path = os.path.join(path, "*")
|
||||
files = glob.glob(files_path)
|
||||
images = []
|
||||
images_names = []
|
||||
for x in files:
|
||||
if x.endswith(('jpg', 'png', 'jpeg', 'webp', 'bmp')):
|
||||
images.append(Image.open(x))
|
||||
images_names.append(os.path.basename(x))
|
||||
return images,images_names
|
||||
# return [Image.open(x) for x in images if x.endswith(('jpg', 'png', 'jpeg', 'webp', 'bmp'))],[os.path.basename(x) for x in images if x.endswith(('jpg', 'png', 'jpeg', 'webp', 'bmp'))]
|
||||
|
||||
def get_random_image_from_folder(path: str):
|
||||
images,names = get_images_from_folder(path)
|
||||
random_image_index = random.randint(0, len(images) - 1)
|
||||
return [images[random_image_index]],[names[random_image_index]]
|
||||
|
||||
def get_images_from_list(imgs: List):
|
||||
images = []
|
||||
images_names = []
|
||||
for x in imgs:
|
||||
images.append(Image.open(os.path.abspath(x.name)))
|
||||
images_names.append(os.path.basename(x.name))
|
||||
return images,images_names
|
||||
# return [Image.open(os.path.abspath(x.name)) for x in imgs],[os.path.basename(x.name) for x in imgs]
|
||||
|
||||
@ -6,34 +6,23 @@ from typing import List, Union
|
||||
import cv2
|
||||
import numpy as np
|
||||
from PIL import Image
|
||||
from scipy import stats
|
||||
|
||||
import insightface
|
||||
from insightface.app.common import Face
|
||||
|
||||
from scripts.reactor_globals import FACE_MODELS_PATH
|
||||
from scripts.reactor_helpers import (
|
||||
get_image_md5hash,
|
||||
get_Device,
|
||||
save_face_model,
|
||||
load_face_model,
|
||||
get_images_from_folder,
|
||||
get_random_image_from_folder,
|
||||
get_images_from_list,
|
||||
set_SDNEXT
|
||||
)
|
||||
from scripts.reactor_helpers import get_image_md5hash, get_Device, save_face_model, load_face_model
|
||||
from scripts.console_log_patch import apply_logging_patch
|
||||
|
||||
from modules.face_restoration import FaceRestoration
|
||||
try: # A1111
|
||||
from modules import codeformer_model, gfpgan_model
|
||||
from modules import codeformer_model
|
||||
except: # SD.Next
|
||||
from modules.postprocess import codeformer_model, gfpgan_model
|
||||
set_SDNEXT()
|
||||
from modules.postprocess import codeformer_model
|
||||
from modules.upscaler import UpscalerData
|
||||
from modules.shared import state
|
||||
from scripts.reactor_logger import logger
|
||||
from reactor_modules.reactor_mask import apply_face_mask
|
||||
from modules.reactor_mask import apply_face_mask
|
||||
|
||||
try:
|
||||
from modules.paths_internal import models_path
|
||||
@ -65,12 +54,7 @@ class EnhancementOptions:
|
||||
face_restorer: FaceRestoration = None
|
||||
restorer_visibility: float = 0.5
|
||||
codeformer_weight: float = 0.5
|
||||
upscale_force: bool = False
|
||||
|
||||
@dataclass
|
||||
class DetectionOptions:
|
||||
det_thresh: float = 0.5
|
||||
det_maxnum: int = 0
|
||||
|
||||
MESSAGED_STOPPED = False
|
||||
MESSAGED_SKIPPED = False
|
||||
@ -108,36 +92,7 @@ SOURCE_FACES = None
|
||||
SOURCE_IMAGE_HASH = None
|
||||
TARGET_FACES = None
|
||||
TARGET_IMAGE_HASH = None
|
||||
SOURCE_FACES_LIST = []
|
||||
SOURCE_IMAGE_LIST_HASH = []
|
||||
|
||||
def clear_faces():
|
||||
global SOURCE_FACES, SOURCE_IMAGE_HASH
|
||||
SOURCE_FACES = None
|
||||
SOURCE_IMAGE_HASH = None
|
||||
logger.status("Source Images Hash has been reset (for Single Source or Face Model)")
|
||||
|
||||
def clear_faces_list():
|
||||
global SOURCE_FACES_LIST, SOURCE_IMAGE_LIST_HASH
|
||||
SOURCE_FACES_LIST = []
|
||||
SOURCE_IMAGE_LIST_HASH = []
|
||||
logger.status("Source Images Hash has been reset (for Multiple or Folder Source)")
|
||||
|
||||
def clear_faces_target():
|
||||
global TARGET_FACES, TARGET_IMAGE_HASH
|
||||
TARGET_FACES = None
|
||||
TARGET_IMAGE_HASH = None
|
||||
logger.status("Target Images Hash has been reset")
|
||||
|
||||
def clear_faces_all():
|
||||
global SOURCE_FACES, SOURCE_IMAGE_HASH, SOURCE_FACES_LIST, SOURCE_IMAGE_LIST_HASH, TARGET_FACES, TARGET_IMAGE_HASH
|
||||
SOURCE_FACES = None
|
||||
SOURCE_IMAGE_HASH = None
|
||||
TARGET_FACES = None
|
||||
TARGET_IMAGE_HASH = None
|
||||
SOURCE_FACES_LIST = []
|
||||
SOURCE_IMAGE_LIST_HASH = []
|
||||
logger.status("All Images Hash has been reset")
|
||||
|
||||
def getAnalysisModel():
|
||||
global ANALYSIS_MODEL
|
||||
@ -166,16 +121,14 @@ def restore_face(image: Image, enhancement_options: EnhancementOptions):
|
||||
|
||||
if enhancement_options.face_restorer is not None:
|
||||
original_image = result_image.copy()
|
||||
logger.status("Restoring the face with %s", enhancement_options.face_restorer.name())
|
||||
numpy_image = np.array(result_image)
|
||||
if enhancement_options.face_restorer.name() == "CodeFormer":
|
||||
logger.status("Restoring the face with %s (weight: %s)", enhancement_options.face_restorer.name(), enhancement_options.codeformer_weight)
|
||||
numpy_image = codeformer_model.codeformer.restore(
|
||||
numpy_image, w=enhancement_options.codeformer_weight
|
||||
)
|
||||
else: # GFPGAN:
|
||||
logger.status("Restoring the face with %s", enhancement_options.face_restorer.name())
|
||||
numpy_image = gfpgan_model.gfpgan_fix_faces(numpy_image)
|
||||
# numpy_image = enhancement_options.face_restorer.restore(numpy_image)
|
||||
else:
|
||||
numpy_image = enhancement_options.face_restorer.restore(numpy_image)
|
||||
restored_image = Image.fromarray(numpy_image)
|
||||
result_image = Image.blend(
|
||||
original_image, restored_image, enhancement_options.restorer_visibility
|
||||
@ -297,13 +250,13 @@ def half_det_size(det_size):
|
||||
logger.status("Trying to halve 'det_size' parameter")
|
||||
return (det_size[0] // 2, det_size[1] // 2)
|
||||
|
||||
def analyze_faces(img_data: np.ndarray, det_size=(640, 640), det_thresh=0.5, det_maxnum=0):
|
||||
def analyze_faces(img_data: np.ndarray, det_size=(640, 640)):
|
||||
logger.info("Applied Execution Provider: %s", PROVIDERS[0])
|
||||
face_analyser = copy.deepcopy(getAnalysisModel())
|
||||
face_analyser.prepare(ctx_id=0, det_thresh=det_thresh, det_size=det_size)
|
||||
return face_analyser.get(img_data, max_num=det_maxnum)
|
||||
face_analyser.prepare(ctx_id=0, det_size=det_size)
|
||||
return face_analyser.get(img_data)
|
||||
|
||||
def get_face_single(img_data: np.ndarray, face, face_index=0, det_size=(640, 640), gender_source=0, gender_target=0, det_thresh=0.5, det_maxnum=0):
|
||||
def get_face_single(img_data: np.ndarray, face, face_index=0, det_size=(640, 640), gender_source=0, gender_target=0):
|
||||
|
||||
buffalo_path = os.path.join(models_path, "insightface/models/buffalo_l.zip")
|
||||
if os.path.exists(buffalo_path):
|
||||
@ -326,20 +279,20 @@ def get_face_single(img_data: np.ndarray, face, face_index=0, det_size=(640, 640
|
||||
if gender_source != 0:
|
||||
if len(face) == 0 and det_size[0] > 320 and det_size[1] > 320:
|
||||
det_size_half = half_det_size(det_size)
|
||||
return get_face_single(img_data, analyze_faces(img_data, det_size_half, det_thresh, det_maxnum), face_index, det_size_half, gender_source, gender_target, det_thresh, det_maxnum)
|
||||
return get_face_single(img_data, analyze_faces(img_data, det_size_half), face_index, det_size_half, gender_source, gender_target)
|
||||
faces, wrong_gender = get_face_gender(face,face_index,gender_source,"Source",gender_detected)
|
||||
return faces, wrong_gender, face_age, face_gender
|
||||
|
||||
if gender_target != 0:
|
||||
if len(face) == 0 and det_size[0] > 320 and det_size[1] > 320:
|
||||
det_size_half = half_det_size(det_size)
|
||||
return get_face_single(img_data, analyze_faces(img_data, det_size_half, det_thresh, det_maxnum), face_index, det_size_half, gender_source, gender_target, det_thresh, det_maxnum)
|
||||
return get_face_single(img_data, analyze_faces(img_data, det_size_half), face_index, det_size_half, gender_source, gender_target)
|
||||
faces, wrong_gender = get_face_gender(face,face_index,gender_target,"Target",gender_detected)
|
||||
return faces, wrong_gender, face_age, face_gender
|
||||
|
||||
if len(face) == 0 and det_size[0] > 320 and det_size[1] > 320:
|
||||
det_size_half = half_det_size(det_size)
|
||||
return get_face_single(img_data, analyze_faces(img_data, det_size_half, det_thresh, det_maxnum), face_index, det_size_half, gender_source, gender_target, det_thresh, det_maxnum)
|
||||
return get_face_single(img_data, analyze_faces(img_data, det_size_half), face_index, det_size_half, gender_source, gender_target)
|
||||
|
||||
try:
|
||||
return sorted(face, key=lambda x: x.bbox[0])[face_index], 0, face_age, face_gender
|
||||
@ -362,13 +315,8 @@ def swap_face(
|
||||
mask_face: bool = False,
|
||||
select_source: int = 0,
|
||||
face_model: str = "None",
|
||||
source_folder: str = "",
|
||||
source_imgs: Union[List, None] = None,
|
||||
random_image: bool = False,
|
||||
detection_options: Union[DetectionOptions, None] = None,
|
||||
):
|
||||
global SOURCE_FACES, SOURCE_IMAGE_HASH, TARGET_FACES, TARGET_IMAGE_HASH, PROVIDERS, SOURCE_FACES_LIST, SOURCE_IMAGE_LIST_HASH
|
||||
|
||||
global SOURCE_FACES, SOURCE_IMAGE_HASH, TARGET_FACES, TARGET_IMAGE_HASH, PROVIDERS
|
||||
result_image = target_img
|
||||
|
||||
PROVIDERS = ["CUDAExecutionProvider"] if device == "CUDA" else ["CPUExecutionProvider"]
|
||||
@ -400,234 +348,180 @@ def swap_face(
|
||||
output_info: str = ""
|
||||
swapped = 0
|
||||
|
||||
# *****************
|
||||
# SWAP from FOLDER or MULTIPLE images:
|
||||
if select_source == 0 and source_img is not None:
|
||||
|
||||
if (select_source == 0 and source_imgs is not None) or (select_source == 2 and (source_folder is not None and source_folder != "")):
|
||||
source_img = cv2.cvtColor(np.array(source_img), cv2.COLOR_RGB2BGR)
|
||||
|
||||
result = []
|
||||
if source_hash_check:
|
||||
|
||||
if random_image and select_source == 2:
|
||||
source_images,source_images_names = get_random_image_from_folder(source_folder)
|
||||
logger.status(f"Processing with Random Image from the folder: {source_images_names[0]}")
|
||||
else:
|
||||
source_images,source_images_names = get_images_from_folder(source_folder) if select_source == 2 else get_images_from_list(source_imgs)
|
||||
|
||||
if len(source_images) > 0:
|
||||
source_img_ff = []
|
||||
source_faces_ff = []
|
||||
for i, source_image in enumerate(source_images):
|
||||
|
||||
source_image = cv2.cvtColor(np.array(source_image), cv2.COLOR_RGB2BGR)
|
||||
source_img_ff.append(source_image)
|
||||
|
||||
if source_hash_check:
|
||||
|
||||
source_image_md5hash = get_image_md5hash(source_image)
|
||||
|
||||
if len(SOURCE_IMAGE_LIST_HASH) == 0:
|
||||
SOURCE_IMAGE_LIST_HASH = [source_image_md5hash]
|
||||
source_image_same = False
|
||||
elif len(SOURCE_IMAGE_LIST_HASH) == i:
|
||||
SOURCE_IMAGE_LIST_HASH.append(source_image_md5hash)
|
||||
source_image_same = False
|
||||
else:
|
||||
source_image_same = True if SOURCE_IMAGE_LIST_HASH[i] == source_image_md5hash else False
|
||||
if not source_image_same:
|
||||
SOURCE_IMAGE_LIST_HASH[i] = source_image_md5hash
|
||||
|
||||
logger.info("(Image %s) Source Image MD5 Hash = %s", i, SOURCE_IMAGE_LIST_HASH[i])
|
||||
logger.info("(Image %s) Source Image the Same? %s", i, source_image_same)
|
||||
|
||||
if len(SOURCE_FACES_LIST) == 0:
|
||||
logger.status(f"Analyzing Source Image {i}: {source_images_names[i]}...")
|
||||
source_faces = analyze_faces(source_image, det_thresh=detection_options.det_thresh, det_maxnum=detection_options.det_maxnum)
|
||||
SOURCE_FACES_LIST = [source_faces]
|
||||
elif len(SOURCE_FACES_LIST) == i and not source_image_same:
|
||||
logger.status(f"Analyzing Source Image {i}: {source_images_names[i]}...")
|
||||
source_faces = analyze_faces(source_image, det_thresh=detection_options.det_thresh, det_maxnum=detection_options.det_maxnum)
|
||||
SOURCE_FACES_LIST.append(source_faces)
|
||||
elif len(SOURCE_FACES_LIST) != i and not source_image_same:
|
||||
logger.status(f"Analyzing Source Image {i}: {source_images_names[i]}...")
|
||||
source_faces = analyze_faces(source_image, det_thresh=detection_options.det_thresh, det_maxnum=detection_options.det_maxnum)
|
||||
SOURCE_FACES_LIST[i] = source_faces
|
||||
elif source_image_same:
|
||||
logger.status("(Image %s) Using Hashed Source Face(s) Model...", i)
|
||||
source_faces = SOURCE_FACES_LIST[i]
|
||||
|
||||
else:
|
||||
logger.status(f"Analyzing Source Image {i}...")
|
||||
source_faces = analyze_faces(source_image, det_thresh=detection_options.det_thresh, det_maxnum=detection_options.det_maxnum)
|
||||
|
||||
if source_faces is not None:
|
||||
source_faces_ff.append(source_faces)
|
||||
|
||||
if len(source_faces_ff) > 0:
|
||||
|
||||
if target_hash_check:
|
||||
|
||||
target_image_md5hash = get_image_md5hash(target_img)
|
||||
|
||||
if TARGET_IMAGE_HASH is None:
|
||||
TARGET_IMAGE_HASH = target_image_md5hash
|
||||
target_image_same = False
|
||||
else:
|
||||
target_image_same = True if TARGET_IMAGE_HASH == target_image_md5hash else False
|
||||
if not target_image_same:
|
||||
TARGET_IMAGE_HASH = target_image_md5hash
|
||||
|
||||
logger.info("Target Image MD5 Hash = %s", TARGET_IMAGE_HASH)
|
||||
logger.info("Target Image the Same? %s", target_image_same)
|
||||
|
||||
if TARGET_FACES is None or not target_image_same:
|
||||
logger.status("Analyzing Target Image...")
|
||||
target_faces = analyze_faces(target_img, det_thresh=detection_options.det_thresh, det_maxnum=detection_options.det_maxnum)
|
||||
TARGET_FACES = target_faces
|
||||
elif target_image_same:
|
||||
logger.status("Using Hashed Target Face(s) Model...")
|
||||
target_faces = TARGET_FACES
|
||||
source_image_md5hash = get_image_md5hash(source_img)
|
||||
|
||||
if SOURCE_IMAGE_HASH is None:
|
||||
SOURCE_IMAGE_HASH = source_image_md5hash
|
||||
source_image_same = False
|
||||
else:
|
||||
logger.status("Analyzing Target Image...")
|
||||
target_faces = analyze_faces(target_img, det_thresh=detection_options.det_thresh, det_maxnum=detection_options.det_maxnum)
|
||||
|
||||
for i,source_faces in enumerate(source_faces_ff):
|
||||
|
||||
logger.status("(Image %s) Detecting Source Face, Index = %s", i, source_faces_index[0])
|
||||
source_face, wrong_gender, source_age, source_gender = get_face_single(source_img_ff[i], source_faces, face_index=source_faces_index[0], gender_source=gender_source, det_thresh=detection_options.det_thresh, det_maxnum=detection_options.det_maxnum)
|
||||
|
||||
if source_age != "None" or source_gender != "None":
|
||||
logger.status("(Image %s) Detected: -%s- y.o. %s", i, source_age, source_gender)
|
||||
|
||||
if len(source_faces_index) != 0 and len(source_faces_index) != 1 and len(source_faces_index) != len(faces_index):
|
||||
logger.status("Source Faces must have no entries (default=0), one entry, or same number of entries as target faces.")
|
||||
|
||||
elif source_face is not None:
|
||||
|
||||
result_image, output, swapped = operate(source_img_ff[i],target_img,target_img_orig,model,source_faces_index,faces_index,source_faces,target_faces,gender_source,gender_target,source_face,wrong_gender,source_age,source_gender,output,swapped,mask_face,entire_mask_image,enhancement_options,detection_options)
|
||||
|
||||
result.append(result_image)
|
||||
|
||||
result = [result_image] if len(result) == 0 else result
|
||||
|
||||
return result, output, swapped
|
||||
|
||||
# END
|
||||
# *****************
|
||||
|
||||
# ***********************
|
||||
# SWAP from IMG or MODEL:
|
||||
|
||||
else:
|
||||
|
||||
if select_source == 0 and source_img is not None:
|
||||
|
||||
source_img = cv2.cvtColor(np.array(source_img), cv2.COLOR_RGB2BGR)
|
||||
|
||||
if source_hash_check:
|
||||
|
||||
source_image_md5hash = get_image_md5hash(source_img)
|
||||
|
||||
if SOURCE_IMAGE_HASH is None:
|
||||
source_image_same = True if SOURCE_IMAGE_HASH == source_image_md5hash else False
|
||||
if not source_image_same:
|
||||
SOURCE_IMAGE_HASH = source_image_md5hash
|
||||
source_image_same = False
|
||||
else:
|
||||
source_image_same = True if SOURCE_IMAGE_HASH == source_image_md5hash else False
|
||||
if not source_image_same:
|
||||
SOURCE_IMAGE_HASH = source_image_md5hash
|
||||
|
||||
logger.info("Source Image MD5 Hash = %s", SOURCE_IMAGE_HASH)
|
||||
logger.info("Source Image the Same? %s", source_image_same)
|
||||
logger.info("Source Image MD5 Hash = %s", SOURCE_IMAGE_HASH)
|
||||
logger.info("Source Image the Same? %s", source_image_same)
|
||||
|
||||
if SOURCE_FACES is None or not source_image_same:
|
||||
logger.status("Analyzing Source Image...")
|
||||
source_faces = analyze_faces(source_img, det_thresh=detection_options.det_thresh, det_maxnum=detection_options.det_maxnum)
|
||||
SOURCE_FACES = source_faces
|
||||
elif source_image_same:
|
||||
logger.status("Using Hashed Source Face(s) Model...")
|
||||
source_faces = SOURCE_FACES
|
||||
|
||||
else:
|
||||
if SOURCE_FACES is None or not source_image_same:
|
||||
logger.status("Analyzing Source Image...")
|
||||
source_faces = analyze_faces(source_img, det_thresh=detection_options.det_thresh, det_maxnum=detection_options.det_maxnum)
|
||||
|
||||
elif select_source == 1 and (face_model is not None and face_model != "None"):
|
||||
source_face_model = [load_face_model(face_model)]
|
||||
if source_face_model is not None:
|
||||
source_faces_index = [0]
|
||||
source_faces = source_face_model
|
||||
logger.status(f"Using Loaded Source Face Model: {face_model}")
|
||||
else:
|
||||
logger.error(f"Cannot load Face Model File: {face_model}")
|
||||
source_faces = analyze_faces(source_img)
|
||||
SOURCE_FACES = source_faces
|
||||
elif source_image_same:
|
||||
logger.status("Using Hashed Source Face(s) Model...")
|
||||
source_faces = SOURCE_FACES
|
||||
|
||||
else:
|
||||
logger.error("Cannot detect any Source")
|
||||
return result_image, [], 0
|
||||
logger.status("Analyzing Source Image...")
|
||||
source_faces = analyze_faces(source_img)
|
||||
|
||||
if source_faces is not None:
|
||||
elif select_source == 1 and (face_model is not None and face_model != "None"):
|
||||
source_face_model = [load_face_model(face_model)]
|
||||
if source_face_model is not None:
|
||||
source_faces_index = [0]
|
||||
source_faces = source_face_model
|
||||
logger.status("Using Loaded Source Face Model...")
|
||||
else:
|
||||
logger.error(f"Cannot load Face Model File: {face_model}.safetensors")
|
||||
else:
|
||||
logger.error("Cannot detect any Source")
|
||||
|
||||
if target_hash_check:
|
||||
if source_faces is not None:
|
||||
|
||||
target_image_md5hash = get_image_md5hash(target_img)
|
||||
if target_hash_check:
|
||||
|
||||
if TARGET_IMAGE_HASH is None:
|
||||
target_image_md5hash = get_image_md5hash(target_img)
|
||||
|
||||
if TARGET_IMAGE_HASH is None:
|
||||
TARGET_IMAGE_HASH = target_image_md5hash
|
||||
target_image_same = False
|
||||
else:
|
||||
target_image_same = True if TARGET_IMAGE_HASH == target_image_md5hash else False
|
||||
if not target_image_same:
|
||||
TARGET_IMAGE_HASH = target_image_md5hash
|
||||
target_image_same = False
|
||||
else:
|
||||
target_image_same = True if TARGET_IMAGE_HASH == target_image_md5hash else False
|
||||
if not target_image_same:
|
||||
TARGET_IMAGE_HASH = target_image_md5hash
|
||||
|
||||
logger.info("Target Image MD5 Hash = %s", TARGET_IMAGE_HASH)
|
||||
logger.info("Target Image the Same? %s", target_image_same)
|
||||
logger.info("Target Image MD5 Hash = %s", TARGET_IMAGE_HASH)
|
||||
logger.info("Target Image the Same? %s", target_image_same)
|
||||
|
||||
if TARGET_FACES is None or not target_image_same:
|
||||
logger.status("Analyzing Target Image...")
|
||||
target_faces = analyze_faces(target_img, det_thresh=detection_options.det_thresh, det_maxnum=detection_options.det_maxnum)
|
||||
TARGET_FACES = target_faces
|
||||
elif target_image_same:
|
||||
logger.status("Using Hashed Target Face(s) Model...")
|
||||
target_faces = TARGET_FACES
|
||||
|
||||
else:
|
||||
if TARGET_FACES is None or not target_image_same:
|
||||
logger.status("Analyzing Target Image...")
|
||||
target_faces = analyze_faces(target_img, det_thresh=detection_options.det_thresh, det_maxnum=detection_options.det_maxnum)
|
||||
target_faces = analyze_faces(target_img)
|
||||
TARGET_FACES = target_faces
|
||||
elif target_image_same:
|
||||
logger.status("Using Hashed Target Face(s) Model...")
|
||||
target_faces = TARGET_FACES
|
||||
|
||||
logger.status("Detecting Source Face, Index = %s", source_faces_index[0])
|
||||
if select_source == 0 and source_img is not None:
|
||||
source_face, wrong_gender, source_age, source_gender = get_face_single(source_img, source_faces, face_index=source_faces_index[0], gender_source=gender_source, det_thresh=detection_options.det_thresh, det_maxnum=detection_options.det_maxnum)
|
||||
else:
|
||||
source_face = sorted(source_faces, key=lambda x: x.bbox[0])[source_faces_index[0]]
|
||||
wrong_gender = 0
|
||||
source_age = source_face["age"]
|
||||
source_gender = "Female" if source_face["gender"] == 0 else "Male"
|
||||
|
||||
if source_age != "None" or source_gender != "None":
|
||||
logger.status("Detected: -%s- y.o. %s", source_age, source_gender)
|
||||
|
||||
output_info = f"SourceFaceIndex={source_faces_index[0]};Age={source_age};Gender={source_gender}\n"
|
||||
output.append(output_info)
|
||||
|
||||
if len(source_faces_index) != 0 and len(source_faces_index) != 1 and len(source_faces_index) != len(faces_index):
|
||||
logger.status("Source Faces must have no entries (default=0), one entry, or same number of entries as target faces.")
|
||||
|
||||
elif source_face is not None:
|
||||
|
||||
result_image, output, swapped = operate(source_img,target_img,target_img_orig,model,source_faces_index,faces_index,source_faces,target_faces,gender_source,gender_target,source_face,wrong_gender,source_age,source_gender,output,swapped,mask_face,entire_mask_image,enhancement_options,detection_options)
|
||||
|
||||
else:
|
||||
logger.status("No source face(s) in the provided Index")
|
||||
else:
|
||||
logger.status("No source face(s) found")
|
||||
logger.status("Analyzing Target Image...")
|
||||
target_faces = analyze_faces(target_img)
|
||||
|
||||
return result_image, output, swapped
|
||||
logger.status("Detecting Source Face, Index = %s", source_faces_index[0])
|
||||
if select_source == 0 and source_img is not None:
|
||||
source_face, wrong_gender, source_age, source_gender = get_face_single(source_img, source_faces, face_index=source_faces_index[0], gender_source=gender_source)
|
||||
else:
|
||||
source_face = sorted(source_faces, key=lambda x: x.bbox[0])[source_faces_index[0]]
|
||||
wrong_gender = 0
|
||||
source_age = source_face["age"]
|
||||
source_gender = "Female" if source_face["gender"] == 0 else "Male"
|
||||
if source_age != "None" or source_gender != "None":
|
||||
logger.status("Detected: -%s- y.o. %s", source_age, source_gender)
|
||||
|
||||
# END
|
||||
# **********************
|
||||
output_info = f"SourceFaceIndex={source_faces_index[0]};Age={source_age};Gender={source_gender}\n"
|
||||
output.append(output_info)
|
||||
|
||||
return result_image, [], 0
|
||||
if len(source_faces_index) != 0 and len(source_faces_index) != 1 and len(source_faces_index) != len(faces_index):
|
||||
logger.status("Source Faces must have no entries (default=0), one entry, or same number of entries as target faces.")
|
||||
elif source_face is not None:
|
||||
|
||||
def build_face_model(image: Image.Image, name: str, save_model: bool = True, det_size=(640, 640)):
|
||||
result = target_img
|
||||
face_swapper = getFaceSwapModel(model)
|
||||
|
||||
source_face_idx = 0
|
||||
|
||||
for face_num in faces_index:
|
||||
if check_process_halt():
|
||||
return result_image, [], 0
|
||||
if len(source_faces_index) > 1 and source_face_idx > 0:
|
||||
logger.status("Detecting Source Face, Index = %s", source_faces_index[source_face_idx])
|
||||
source_face, wrong_gender, source_age, source_gender = get_face_single(source_img, source_faces, face_index=source_faces_index[source_face_idx], gender_source=gender_source)
|
||||
if source_age != "None" or source_gender != "None":
|
||||
logger.status("Detected: -%s- y.o. %s", source_age, source_gender)
|
||||
|
||||
output_info = f"SourceFaceIndex={source_faces_index[source_face_idx]};Age={source_age};Gender={source_gender}\n"
|
||||
output.append(output_info)
|
||||
|
||||
source_face_idx += 1
|
||||
|
||||
if source_face is not None and wrong_gender == 0:
|
||||
logger.status("Detecting Target Face, Index = %s", face_num)
|
||||
target_face, wrong_gender, target_age, target_gender = get_face_single(target_img, target_faces, face_index=face_num, gender_target=gender_target)
|
||||
if target_age != "None" or target_gender != "None":
|
||||
logger.status("Detected: -%s- y.o. %s", target_age, target_gender)
|
||||
|
||||
output_info = f"TargetFaceIndex={face_num};Age={target_age};Gender={target_gender}\n"
|
||||
output.append(output_info)
|
||||
|
||||
if target_face is not None and wrong_gender == 0:
|
||||
logger.status("Swapping Source into Target")
|
||||
swapped_image = face_swapper.get(result, target_face, source_face)
|
||||
|
||||
if mask_face:
|
||||
result = apply_face_mask(swapped_image=swapped_image,target_image=result,target_face=target_face,entire_mask_image=entire_mask_image)
|
||||
else:
|
||||
result = swapped_image
|
||||
swapped += 1
|
||||
|
||||
elif wrong_gender == 1:
|
||||
wrong_gender = 0
|
||||
|
||||
if source_face_idx == len(source_faces_index):
|
||||
result_image = Image.fromarray(cv2.cvtColor(result, cv2.COLOR_BGR2RGB))
|
||||
|
||||
if enhancement_options is not None and len(source_faces_index) > 1:
|
||||
result_image = enhance_image(result_image, enhancement_options)
|
||||
|
||||
return result_image, output, swapped
|
||||
|
||||
else:
|
||||
logger.status(f"No target face found for {face_num}")
|
||||
|
||||
elif wrong_gender == 1:
|
||||
wrong_gender = 0
|
||||
|
||||
if source_face_idx == len(source_faces_index):
|
||||
result_image = Image.fromarray(cv2.cvtColor(result, cv2.COLOR_BGR2RGB))
|
||||
|
||||
if enhancement_options is not None and len(source_faces_index) > 1:
|
||||
result_image = enhance_image(result_image, enhancement_options)
|
||||
|
||||
return result_image, output, swapped
|
||||
|
||||
else:
|
||||
logger.status(f"No source face found for face number {source_face_idx}.")
|
||||
|
||||
result_image = Image.fromarray(cv2.cvtColor(result, cv2.COLOR_BGR2RGB))
|
||||
|
||||
if enhancement_options is not None and swapped > 0:
|
||||
if mask_face and entire_mask_image is not None:
|
||||
result_image = enhance_image_and_mask(result_image, enhancement_options,Image.fromarray(target_img_orig),Image.fromarray(entire_mask_image).convert("L"))
|
||||
else:
|
||||
result_image = enhance_image(result_image, enhancement_options)
|
||||
elif mask_face and entire_mask_image is not None and swapped > 0:
|
||||
result_image = Image.composite(result_image,Image.fromarray(target_img_orig),Image.fromarray(entire_mask_image).convert("L"))
|
||||
|
||||
else:
|
||||
logger.status("No source face(s) in the provided Index")
|
||||
else:
|
||||
logger.status("No source face(s) found")
|
||||
|
||||
return result_image, output, swapped
|
||||
|
||||
|
||||
def build_face_model(image: Image.Image, name: str):
|
||||
if image is None:
|
||||
error_msg = "Please load an Image"
|
||||
logger.error(error_msg)
|
||||
@ -638,188 +532,16 @@ def build_face_model(image: Image.Image, name: str, save_model: bool = True, det
|
||||
return error_msg
|
||||
apply_logging_patch(1)
|
||||
image = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)
|
||||
if save_model:
|
||||
logger.status("Building Face Model...")
|
||||
face_model = analyze_faces(image, det_size)
|
||||
|
||||
if len(face_model) == 0:
|
||||
det_size_half = half_det_size(det_size)
|
||||
face_model = analyze_faces(image, det_size_half)
|
||||
|
||||
logger.status("Building Face Model...")
|
||||
face_model = analyze_faces(image)
|
||||
if face_model is not None and len(face_model) > 0:
|
||||
if save_model:
|
||||
face_model_path = os.path.join(FACE_MODELS_PATH, name + ".safetensors")
|
||||
save_face_model(face_model[0],face_model_path)
|
||||
logger.status("--Done!--")
|
||||
done_msg = f"Face model has been saved to '{face_model_path}'"
|
||||
logger.status(done_msg)
|
||||
return done_msg
|
||||
else:
|
||||
return face_model[0]
|
||||
face_model_path = os.path.join(FACE_MODELS_PATH, name + ".safetensors")
|
||||
save_face_model(face_model[0],face_model_path)
|
||||
logger.status("--Done!--")
|
||||
done_msg = f"Face model has been saved to '{face_model_path}'"
|
||||
logger.status(done_msg)
|
||||
return done_msg
|
||||
else:
|
||||
no_face_msg = "No face found, please try another image"
|
||||
logger.error(no_face_msg)
|
||||
return no_face_msg
|
||||
|
||||
def blend_faces(images_list: List, name: str, compute_method: int = 0, shape_check: bool = False, is_api: bool = False):
|
||||
faces = []
|
||||
embeddings = []
|
||||
images: List[Image.Image] = []
|
||||
if not is_api:
|
||||
images, images_names = get_images_from_list(images_list)
|
||||
else:
|
||||
images = images_list
|
||||
for i,image in enumerate(images):
|
||||
if not is_api:
|
||||
logger.status(f"Building Face Model for {images_names[i]}...")
|
||||
else:
|
||||
logger.status(f"Building Face Model for Image {i+1}...")
|
||||
face = build_face_model(image,str(i),save_model=False)
|
||||
if isinstance(face, str):
|
||||
# logger.error(f"No faces found in {images_names[i]}, skipping")
|
||||
continue
|
||||
if shape_check:
|
||||
if i == 0:
|
||||
embedding_shape = face.embedding.shape
|
||||
elif face.embedding.shape != embedding_shape:
|
||||
if not is_api:
|
||||
logger.error(f"Embedding Shape Mismatch for {images_names[i]}, skipping")
|
||||
else:
|
||||
logger.error(f"Embedding Shape Mismatch for Image {i+1}, skipping")
|
||||
continue
|
||||
faces.append(face)
|
||||
embeddings.append(face.embedding)
|
||||
if len(faces) > 0:
|
||||
# if shape_check:
|
||||
# embedding_shape = embeddings[0].shape
|
||||
# for embedding in embeddings:
|
||||
# if embedding.shape != embedding_shape:
|
||||
# logger.error("Embedding Shape Mismatch")
|
||||
# break
|
||||
compute_method_name = "Mean" if compute_method == 0 else "Median" if compute_method == 1 else "Mode"
|
||||
logger.status(f"Blending with Compute Method {compute_method_name}...")
|
||||
blended_embedding = np.mean(embeddings, axis=0) if compute_method == 0 else np.median(embeddings, axis=0) if compute_method == 1 else stats.mode(embeddings, axis=0)[0].astype(np.float32)
|
||||
blended_face = Face(
|
||||
bbox=faces[0].bbox,
|
||||
kps=faces[0].kps,
|
||||
det_score=faces[0].det_score,
|
||||
landmark_3d_68=faces[0].landmark_3d_68,
|
||||
pose=faces[0].pose,
|
||||
landmark_2d_106=faces[0].landmark_2d_106,
|
||||
embedding=blended_embedding,
|
||||
gender=faces[0].gender,
|
||||
age=faces[0].age
|
||||
)
|
||||
if blended_face is not None:
|
||||
face_model_path = os.path.join(FACE_MODELS_PATH, name + ".safetensors")
|
||||
save_face_model(blended_face,face_model_path)
|
||||
logger.status("--Done!--")
|
||||
done_msg = f"Face model has been saved to '{face_model_path}'"
|
||||
logger.status(done_msg)
|
||||
return done_msg
|
||||
else:
|
||||
no_face_msg = "Something went wrong, please try another set of images"
|
||||
logger.error(no_face_msg)
|
||||
return no_face_msg
|
||||
return "No faces found"
|
||||
|
||||
|
||||
def operate(
|
||||
source_img,
|
||||
target_img,
|
||||
target_img_orig,
|
||||
model,
|
||||
source_faces_index,
|
||||
faces_index,
|
||||
source_faces,
|
||||
target_faces,
|
||||
gender_source,
|
||||
gender_target,
|
||||
source_face,
|
||||
wrong_gender,
|
||||
source_age,
|
||||
source_gender,
|
||||
output,
|
||||
swapped,
|
||||
mask_face,
|
||||
entire_mask_image,
|
||||
enhancement_options,
|
||||
detection_options,
|
||||
):
|
||||
result = target_img
|
||||
face_swapper = getFaceSwapModel(model)
|
||||
|
||||
source_face_idx = 0
|
||||
|
||||
for face_num in faces_index:
|
||||
if check_process_halt():
|
||||
return result_image, [], 0
|
||||
if len(source_faces_index) > 1 and source_face_idx > 0:
|
||||
logger.status("Detecting Source Face, Index = %s", source_faces_index[source_face_idx])
|
||||
source_face, wrong_gender, source_age, source_gender = get_face_single(source_img, source_faces, face_index=source_faces_index[source_face_idx], gender_source=gender_source, det_thresh=detection_options.det_thresh, det_maxnum=detection_options.det_maxnum)
|
||||
if source_age != "None" or source_gender != "None":
|
||||
logger.status("Detected: -%s- y.o. %s", source_age, source_gender)
|
||||
|
||||
output_info = f"SourceFaceIndex={source_faces_index[source_face_idx]};Age={source_age};Gender={source_gender}\n"
|
||||
output.append(output_info)
|
||||
|
||||
source_face_idx += 1
|
||||
|
||||
if source_face is not None and wrong_gender == 0:
|
||||
logger.status("Detecting Target Face, Index = %s", face_num)
|
||||
target_face, wrong_gender, target_age, target_gender = get_face_single(target_img, target_faces, face_index=face_num, gender_target=gender_target, det_thresh=detection_options.det_thresh, det_maxnum=detection_options.det_maxnum)
|
||||
if target_age != "None" or target_gender != "None":
|
||||
logger.status("Detected: -%s- y.o. %s", target_age, target_gender)
|
||||
|
||||
output_info = f"TargetFaceIndex={face_num};Age={target_age};Gender={target_gender}\n"
|
||||
output.append(output_info)
|
||||
|
||||
if target_face is not None and wrong_gender == 0:
|
||||
logger.status("Swapping Source into Target")
|
||||
swapped_image = face_swapper.get(result, target_face, source_face)
|
||||
|
||||
if mask_face:
|
||||
result = apply_face_mask(swapped_image=swapped_image,target_image=result,target_face=target_face,entire_mask_image=entire_mask_image)
|
||||
else:
|
||||
result = swapped_image
|
||||
swapped += 1
|
||||
|
||||
elif wrong_gender == 1:
|
||||
wrong_gender = 0
|
||||
|
||||
if source_face_idx == len(source_faces_index):
|
||||
result_image = Image.fromarray(cv2.cvtColor(result, cv2.COLOR_BGR2RGB))
|
||||
|
||||
if enhancement_options is not None and len(source_faces_index) > 1:
|
||||
result_image = enhance_image(result_image, enhancement_options)
|
||||
|
||||
return result_image, output, swapped
|
||||
|
||||
else:
|
||||
logger.status(f"No target face found for {face_num}")
|
||||
|
||||
elif wrong_gender == 1:
|
||||
wrong_gender = 0
|
||||
|
||||
if source_face_idx == len(source_faces_index):
|
||||
result_image = Image.fromarray(cv2.cvtColor(result, cv2.COLOR_BGR2RGB))
|
||||
|
||||
if enhancement_options is not None and len(source_faces_index) > 1:
|
||||
result_image = enhance_image(result_image, enhancement_options)
|
||||
|
||||
return result_image, output, swapped
|
||||
|
||||
else:
|
||||
logger.status(f"No source face found for face number {source_face_idx}.")
|
||||
|
||||
result_image = Image.fromarray(cv2.cvtColor(result, cv2.COLOR_BGR2RGB))
|
||||
|
||||
if (enhancement_options is not None and swapped > 0) or enhancement_options.upscale_force:
|
||||
if mask_face and entire_mask_image is not None:
|
||||
result_image = enhance_image_and_mask(result_image, enhancement_options,Image.fromarray(target_img_orig),Image.fromarray(entire_mask_image).convert("L"))
|
||||
else:
|
||||
result_image = enhance_image(result_image, enhancement_options)
|
||||
elif mask_face and entire_mask_image is not None and swapped > 0:
|
||||
result_image = Image.composite(result_image,Image.fromarray(target_img_orig),Image.fromarray(entire_mask_image).convert("L"))
|
||||
|
||||
return result_image, output, swapped
|
||||
|
||||
@ -1,11 +1,10 @@
|
||||
app_title = "ReActor"
|
||||
version_flag = "v0.7.1-b2"
|
||||
version_flag = "v0.5.1"
|
||||
|
||||
from scripts.reactor_logger import logger, get_Run, set_Run
|
||||
from scripts.reactor_globals import DEVICE
|
||||
|
||||
is_run = get_Run()
|
||||
|
||||
if not is_run:
|
||||
logger.status(f"Running {version_flag} on Device: {DEVICE}")
|
||||
logger.status(f"Running {version_flag}")
|
||||
set_Run(True)
|
||||
|
||||
@ -1,94 +0,0 @@
|
||||
'''
|
||||
Thanks @ledahu for contributing
|
||||
'''
|
||||
|
||||
from modules import scripts
|
||||
from modules.shared import opts
|
||||
|
||||
from scripts.reactor_helpers import (
|
||||
get_model_names,
|
||||
get_facemodels
|
||||
)
|
||||
|
||||
|
||||
# xyz_grid = [x for x in scripts.scripts_data if x.script_class.__module__ == "xyz_grid.py"][0].module
|
||||
|
||||
def find_module(module_names):
|
||||
if isinstance(module_names, str):
|
||||
module_names = [s.strip() for s in module_names.split(",")]
|
||||
for data in scripts.scripts_data:
|
||||
if data.script_class.__module__ in module_names and hasattr(data, "module"):
|
||||
return data.module
|
||||
return None
|
||||
|
||||
def bool_(string):
|
||||
string = str(string)
|
||||
if string in ["None", ""]:
|
||||
return None
|
||||
elif string.lower() in ["true", "1"]:
|
||||
return True
|
||||
elif string.lower() in ["false", "0"]:
|
||||
return False
|
||||
else:
|
||||
raise ValueError(f"Could not convert string to boolean: {string}")
|
||||
|
||||
def choices_bool():
|
||||
return ["False", "True"]
|
||||
|
||||
def choices_face_models():
|
||||
return get_model_names(get_facemodels)
|
||||
|
||||
def float_applier(value_name:str, min_range:float = 0, max_range:float = 1):
|
||||
"""
|
||||
Returns a function that applies the given value to the given value_name in opts.data.
|
||||
"""
|
||||
def validate(value_name:str, value:str):
|
||||
value = float(value)
|
||||
# validate value
|
||||
if not min_range == 0:
|
||||
assert value >= min_range, f"Value {value} for {value_name} must be greater than or equal to {min_range}"
|
||||
if not max_range == 1:
|
||||
assert value <= max_range, f"Value {value} for {value_name} must be less than or equal to {max_range}"
|
||||
def apply_float(p, x, xs):
|
||||
validate(value_name, x)
|
||||
opts.data[value_name] = float(x)
|
||||
return apply_float
|
||||
|
||||
def bool_applier(value_name:str):
|
||||
def apply_bool(p, x, xs):
|
||||
x_normed = bool_(x)
|
||||
opts.data[value_name] = x_normed
|
||||
# print(f'normed = {x_normed}')
|
||||
return apply_bool
|
||||
|
||||
def str_applier(value_name:str):
|
||||
def apply_str(p, x, xs):
|
||||
opts.data[value_name] = x
|
||||
return apply_str
|
||||
|
||||
|
||||
def add_axis_options(xyz_grid):
|
||||
extra_axis_options = [
|
||||
xyz_grid.AxisOption("[ReActor] CodeFormer Weight", float, float_applier("codeformer_weight", 0, 1)),
|
||||
xyz_grid.AxisOption("[ReActor] Restorer Visibility", float, float_applier("restorer_visibility", 0, 1)),
|
||||
xyz_grid.AxisOption("[ReActor] Face Mask Correction", str, bool_applier("mask_face"), choices=choices_bool),
|
||||
xyz_grid.AxisOption("[ReActor] Face Models", str, str_applier("face_model"), choices=choices_face_models),
|
||||
]
|
||||
set_a = {opt.label for opt in xyz_grid.axis_options}
|
||||
set_b = {opt.label for opt in extra_axis_options}
|
||||
if set_a.intersection(set_b):
|
||||
return
|
||||
|
||||
xyz_grid.axis_options.extend(extra_axis_options)
|
||||
|
||||
def run():
|
||||
xyz_grid = find_module("xyz_grid.py, xy_grid.py")
|
||||
if xyz_grid:
|
||||
add_axis_options(xyz_grid)
|
||||
|
||||
# XYZ init:
|
||||
try:
|
||||
import modules.script_callbacks as script_callbacks
|
||||
script_callbacks.on_before_ui(run)
|
||||
except:
|
||||
pass
|
||||
Loading…
x
Reference in New Issue
Block a user