Compare commits
No commits in common. "main" and "v0.3.0" have entirely different histories.
58
.github/ISSUE_TEMPLATE/bug_report.yml
vendored
58
.github/ISSUE_TEMPLATE/bug_report.yml
vendored
@ -1,58 +0,0 @@
|
|||||||
name: Bug Report
|
|
||||||
description: You think somethings is broken
|
|
||||||
labels: ["bug", "new"]
|
|
||||||
|
|
||||||
body:
|
|
||||||
- type: checkboxes
|
|
||||||
attributes:
|
|
||||||
label: First, confirm
|
|
||||||
description: Make sure you use the latest version of the ReActor extension and you have already searched to see if an issue already exists for the bug you encountered before you create a new Issue.
|
|
||||||
options:
|
|
||||||
- label: I have read the [instruction](https://github.com/Gourieff/sd-webui-reactor/blob/main/README.md) carefully
|
|
||||||
required: true
|
|
||||||
- label: I have searched the existing issues
|
|
||||||
required: true
|
|
||||||
- label: I have updated the extension to the latest version
|
|
||||||
required: true
|
|
||||||
- type: markdown
|
|
||||||
attributes:
|
|
||||||
value: |
|
|
||||||
*Please fill this form with as much information as possible and *provide screenshots if possible**
|
|
||||||
- type: textarea
|
|
||||||
id: what-did
|
|
||||||
attributes:
|
|
||||||
label: What happened?
|
|
||||||
description: Tell what happened in a very clear and simple way
|
|
||||||
validations:
|
|
||||||
required: true
|
|
||||||
- type: textarea
|
|
||||||
id: steps
|
|
||||||
attributes:
|
|
||||||
label: Steps to reproduce the problem
|
|
||||||
description: Please provide with precise step by step instructions on how to reproduce the bug
|
|
||||||
value: |
|
|
||||||
1. Go to ....
|
|
||||||
2. Press ....
|
|
||||||
3. ...
|
|
||||||
validations:
|
|
||||||
required: true
|
|
||||||
- type: textarea
|
|
||||||
id: sysinfo
|
|
||||||
attributes:
|
|
||||||
label: Sysinfo
|
|
||||||
description: Describe your platform. OS, browser, GPU, what SD WebUI you use, what version and what extensions are also enabled. If you use A1111 you can generate "System info file" (Settings -> Sysinfo) and put it here.
|
|
||||||
validations:
|
|
||||||
required: true
|
|
||||||
- type: textarea
|
|
||||||
id: logs
|
|
||||||
attributes:
|
|
||||||
label: Relevant console log
|
|
||||||
description: Please provide cmd/terminal logs from the moment you started UI to the momemt you got an error. This will be automatically formatted into code, so no need for backticks.
|
|
||||||
render: Shell
|
|
||||||
validations:
|
|
||||||
required: true
|
|
||||||
- type: textarea
|
|
||||||
id: misc
|
|
||||||
attributes:
|
|
||||||
label: Additional information
|
|
||||||
description: Please provide with any relevant additional info or context.
|
|
||||||
5
.github/ISSUE_TEMPLATE/config.yml
vendored
5
.github/ISSUE_TEMPLATE/config.yml
vendored
@ -1,5 +0,0 @@
|
|||||||
blank_issues_enabled: false
|
|
||||||
contact_links:
|
|
||||||
- name: ReActor Extension Community Support
|
|
||||||
url: https://github.com/Gourieff/sd-webui-reactor/discussions
|
|
||||||
about: Please ask and answer questions here.
|
|
||||||
16
.github/ISSUE_TEMPLATE/feature_request.yml
vendored
16
.github/ISSUE_TEMPLATE/feature_request.yml
vendored
@ -1,16 +0,0 @@
|
|||||||
name: Feature request
|
|
||||||
description: Suggest an idea for this project
|
|
||||||
title: "[Feature]: "
|
|
||||||
labels: ["enhancement", "new"]
|
|
||||||
|
|
||||||
body:
|
|
||||||
- type: textarea
|
|
||||||
id: description
|
|
||||||
attributes:
|
|
||||||
label: Feature description
|
|
||||||
description: Describe the feature in a clear and simple way
|
|
||||||
value:
|
|
||||||
- type: markdown
|
|
||||||
attributes:
|
|
||||||
value: |
|
|
||||||
The best way to propose an idea is to start a new discussion via the [Discussions](https://github.com/Gourieff/sd-webui-reactor/discussions) section (choose the "Idea" category)
|
|
||||||
9
.gitignore
vendored
9
.gitignore
vendored
@ -1,10 +1,3 @@
|
|||||||
__pycache__/
|
__pycache__
|
||||||
*.py[cod]
|
|
||||||
*$py.class
|
|
||||||
*.pyc
|
|
||||||
|
|
||||||
.vscode/
|
.vscode/
|
||||||
|
|
||||||
example
|
example
|
||||||
*.txt
|
|
||||||
!requirements.txt
|
|
||||||
|
|||||||
101
API.md
101
API.md
@ -1,101 +0,0 @@
|
|||||||
# <div align="center">ReActor Extension API</div>
|
|
||||||
|
|
||||||
<div align="center">
|
|
||||||
|
|
||||||
[Built-in SD WebUI API](#built-in-sd-webui-api) | [External ReActor API](#external-reactor-api)
|
|
||||||
|
|
||||||
---
|
|
||||||
</div>
|
|
||||||
|
|
||||||
Gourieff's **ReActor** SD WebUI Extension allows to operate via API: both built-in and external (POST and GET requests).
|
|
||||||
|
|
||||||
|
|
||||||
## Built-in SD WebUI API
|
|
||||||
|
|
||||||
This API is actual if you use Automatic1111 stable-diffusion-webui.
|
|
||||||
|
|
||||||
First of all - check the [SD Web API Wiki](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/API) for how to use the API.
|
|
||||||
|
|
||||||
* Call `requests.get(url=f'{address}/sdapi/v1/script-info')` to find the args that ReActor needs;
|
|
||||||
* Define ReActor script args and add like this `"alwayson_scripts": {"reactor":{"args":args}}` in the payload;
|
|
||||||
* Call the API.
|
|
||||||
|
|
||||||
You can find the [full usage example](./example/api_example.py) with all the available parameters and discriptions in the "example" folder.
|
|
||||||
|
|
||||||
## External ReActor API
|
|
||||||
|
|
||||||
ReActor extension supports for external calls via POST or GET requests while your SD WebUI server is working.
|
|
||||||
|
|
||||||
> :warning: Source and Target images must be "base64".
|
|
||||||
|
|
||||||
Example:
|
|
||||||
|
|
||||||
```
|
|
||||||
curl -X POST \
|
|
||||||
'http://127.0.0.1:7860/reactor/image' \
|
|
||||||
-H 'accept: application/json' \
|
|
||||||
-H 'Content-Type: application/json' \
|
|
||||||
-d '{
|
|
||||||
"source_image": "...",
|
|
||||||
"target_image": "...",
|
|
||||||
"source_faces_index": [0],
|
|
||||||
"face_index": [0],
|
|
||||||
"upscaler": "4x_NMKD-Siax_200k",
|
|
||||||
"scale": 2,
|
|
||||||
"upscale_visibility": 1,
|
|
||||||
"face_restorer": "CodeFormer",
|
|
||||||
"restorer_visibility": 1,
|
|
||||||
"restore_first": 1,
|
|
||||||
"model": "inswapper_128.onnx",
|
|
||||||
"gender_source": 0,
|
|
||||||
"gender_target": 0,
|
|
||||||
"save_to_file": 0,
|
|
||||||
"result_file_path": "",
|
|
||||||
"device": "CUDA",
|
|
||||||
"mask_face": 1,
|
|
||||||
"select_source": 1,
|
|
||||||
"face_model": "elena.safetensors",
|
|
||||||
"source_folder": "C:/faces",
|
|
||||||
"random_image": 1,
|
|
||||||
"upscale_force": 1
|
|
||||||
}'
|
|
||||||
```
|
|
||||||
|
|
||||||
* Set `"upscaler"` to `"None"` and `"scale"` to `1` if you don't need to upscale;
|
|
||||||
* Set `"save_to_file"` to `1` if you need to save result to a file;
|
|
||||||
* `"result_file_path"` is set to the `"outputs/api"` folder by default (please, create the folder beforehand to avoid any errors) with a timestamped filename; (output_YYYY-MM-DD_hh-mm-ss), you can set any specific path, e.g. `"C:/stable-diffusion-webui/outputs/api/output.png"`;
|
|
||||||
* Set `"mask_face"` to `1` if you want ReActor to mask the face or to `0` if want ReActor to create a bbox around the face;
|
|
||||||
* Set `"select_source"` to: 0 - Image, 1 - Face Model, 2 - Source Folder;
|
|
||||||
* Set `"face_model"` to the face model file you want to choose if you set `"select_source": 1`;
|
|
||||||
* Set `"source_folder"` to the path with source images (with faces you need as the results) if you set `"select_source": 2`;
|
|
||||||
* Set `"random_image"` to `1` if want ReActor to choose a random image from the path of `"source_folder"`;
|
|
||||||
* Set `"upscale_force"` to `1` if you want ReActor to upscale the image even if no face found.
|
|
||||||
|
|
||||||
You can find full usage examples with all the available parameters in the "example" folder: [cURL](./example/api_external.curl), [JSON](./example/api_external.json).
|
|
||||||
|
|
||||||
As a result you recieve a "base64" image:
|
|
||||||
|
|
||||||
```
|
|
||||||
{"image":"iVBORw0KGgoAAAANSUhEUgAABlAAAARQCAIAAAAdiYuqAAEAAElEQVR4nOz9+ZMlSXImBn6qau4vIjKzzr5wzwBCDrm/7f+/K7IHV3ZkhUIuyZHlkBhiMGig0Y0..."}
|
|
||||||
```
|
|
||||||
|
|
||||||
A list of available models can be seen by GET:
|
|
||||||
* http://127.0.0.1:7860/reactor/models
|
|
||||||
* http://127.0.0.1:7860/reactor/upscalers
|
|
||||||
* http://127.0.0.1:7860/reactor/facemodels
|
|
||||||
|
|
||||||
### FaceModel Buid API
|
|
||||||
|
|
||||||
Send POST to http://127.0.0.1:7860/reactor/facemodels with body:
|
|
||||||
|
|
||||||
```
|
|
||||||
{
|
|
||||||
"source_images": ["...","...","..."],
|
|
||||||
"name": "my_super_model",
|
|
||||||
"compute_method": 0
|
|
||||||
}
|
|
||||||
```
|
|
||||||
|
|
||||||
where:<br>
|
|
||||||
"source_images" is a list of base64 encoded images,<br>
|
|
||||||
"compute_method" is: 0 - Mean, 1- Median, 2 - Mode
|
|
||||||
322
README.md
322
README.md
@ -1,125 +1,23 @@
|
|||||||
<div align="center">
|
# ReActor 0.3.0 for StableDiffusion
|
||||||
|
### The Fast and Simple "[roop-based](https://github.com/s0md3v/sd-webui-roop)" FaceSwap Extension with a lot of improvements and without NSFW filter (uncensored, use it on your own [responsibility](#disclaimer))
|
||||||
|
|
||||||
<img src="https://github.com/Gourieff/Assets/raw/main/sd-webui-reactor/ReActor_logo_NEW_EN.png?raw=true" alt="logo" width="180px"/>
|
> Ex "Roop-GE" (GE - Gourieff Edition, aka "NSFW-Roop"), the extension was renamed with the version 0.3.0<br>
|
||||||
|
> Repository old link: `https://github.com/Gourieff/sd-webui-roop-nsfw`
|
||||||

|
|
||||||
|
|
||||||
<a href="https://boosty.to/artgourieff" target="_blank">
|
|
||||||
<img src="https://lovemet.ru/www/boosty.jpg" width="108" alt="Support Me on Boosty"/>
|
|
||||||
<br>
|
|
||||||
<sup>
|
|
||||||
Support This Project
|
|
||||||
</sup>
|
|
||||||
</a>
|
|
||||||
|
|
||||||
<hr>
|
|
||||||
|
|
||||||
[](https://github.com/Gourieff/sd-webui-reactor/commits/main)
|
|
||||||

|
|
||||||
[](https://github.com/Gourieff/sd-webui-reactor/issues?cacheSeconds=0)
|
|
||||||
[](https://github.com/Gourieff/sd-webui-reactor/issues?q=is%3Aissue+is%3Aclosed)
|
|
||||||

|
|
||||||
|
|
||||||
English | [Русский](/README_RU.md)
|
|
||||||
|
|
||||||
# ReActor for Stable Diffusion
|
|
||||||
|
|
||||||
### The Fast and Simple FaceSwap Extension with a lot of improvements and without NSFW filter (uncensored, use it on your own [responsibility](#disclaimer))
|
|
||||||
|
|
||||||
---
|
---
|
||||||
<b>
|
[**Installation**](#installation) | [**Usage**](#usage) | [**Troubleshooting**](#troubleshooting) | [**Updating**](#updating) | [**ComfyUI**](#comfyui) | [**Disclaimer**](#disclaimer)
|
||||||
<a href="#latestupdate">What's new</a> | <a href="#installation">Installation</a> | <a href="#features">Features</a> | <a href="#usage">Usage</a> | <a href="#api">API</a> | <a href="#troubleshooting">Troubleshooting</a> | <a href="#updating">Updating</a> | <a href="#comfyui">ComfyUI</a> | <a href="#disclaimer">Disclaimer</a>
|
|
||||||
</b>
|
|
||||||
</div>
|
|
||||||
|
|
||||||
---
|
---
|
||||||
|
|
||||||
<img src="https://github.com/Gourieff/Assets/raw/main/sd-webui-reactor/demo_crop.jpg?raw=true" alt="example"/>
|
This is an extension for StableDiffusion's [AUTOMATIC1111 web-ui](https://github.com/AUTOMATIC1111/stable-diffusion-webui/) that allows face-replacement in images. It is based on [Roop-GE](https://github.com/Gourieff/Roop-GE).
|
||||||
|
|
||||||
<a name="latestupdate">
|
<img src="example/demo_crop.jpg" alt="example"/>
|
||||||
|
|
||||||
## What's new in the latest updates
|
|
||||||
|
|
||||||
### 0.7.1 <sub><sup>BETA1
|
|
||||||
|
|
||||||
- Allow spaces for face indexes (e.g.: 0, 1, 2)
|
|
||||||
- Sorting of face models list alphabetically
|
|
||||||
- [FaceModels Build API](./API.md#facemodel-build-api)
|
|
||||||
- Fixes and improvements
|
|
||||||
|
|
||||||
<details>
|
|
||||||
<summary><a>Click to expand more</a></summary>
|
|
||||||
|
|
||||||
### 0.7.0 <sub><sup>BETA2
|
|
||||||
|
|
||||||
- X/Y/Z is improved! One more parameter is ready: you can now select several face models to create a variation of swaps to choose the best one!
|
|
||||||
|
|
||||||
<img src="https://github.com/Gourieff/Assets/blob/main/sd-webui-reactor/0.7.0-whatsnew-05.jpg?raw=true" alt="0.7.0-whatsnew-05" width="100%"/>
|
|
||||||
|
|
||||||
To use "Face Model" axis - you should enable ReActor and choose any face model as the Source:<br>
|
|
||||||
<img src="https://github.com/Gourieff/Assets/blob/main/sd-webui-reactor/0.7.0-whatsnew-07.jpg?raw=true" alt="0.7.0-whatsnew-07" width="50%"/><img src="https://github.com/Gourieff/Assets/blob/main/sd-webui-reactor/0.7.0-whatsnew-06.jpg?raw=true" alt="0.7.0-whatsnew-06" width="50%"/>
|
|
||||||
|
|
||||||
Full size demo image: [xyz_demo_2.png](https://raw.githubusercontent.com/Gourieff/Assets/main/sd-webui-reactor/xyz_demo_2.png)
|
|
||||||
|
|
||||||
### 0.7.0 <sub><sup>BETA1
|
|
||||||
|
|
||||||
- X/Y/Z Script support (up to 3 axes: CodeFormer Weight, Restorer Visibility, Face Mask Correction)
|
|
||||||
|
|
||||||
<img src="https://github.com/Gourieff/Assets/blob/main/sd-webui-reactor/0.7.0-whatsnew-03.jpg?raw=true" alt="0.7.0-whatsnew-03" width="100%"/>
|
|
||||||
|
|
||||||
<img src="https://github.com/Gourieff/Assets/blob/main/sd-webui-reactor/0.7.0-whatsnew-04.jpg?raw=true" alt="0.7.0-whatsnew-04" width="100%"/>
|
|
||||||
|
|
||||||
Full size demo image: [xyz_demo.png](https://raw.githubusercontent.com/Gourieff/Assets/main/sd-webui-reactor/xyz_demo.png)
|
|
||||||
|
|
||||||
__Don't forget to enable ReActor and set any source (to prevent "no source" error)__
|
|
||||||
|
|
||||||
### 0.7.0 <sub><sup>ALPHA1
|
|
||||||
|
|
||||||
- You can now blend faces to build blended face models ("Tools->Face Models->Blend") - due to popular demand
|
|
||||||
|
|
||||||
<img src="https://github.com/Gourieff/Assets/blob/main/sd-webui-reactor/0.7.0-whatsnew-01.jpg?raw=true" alt="0.7.0-whatsnew-01" width="100%"/><img src="https://github.com/Gourieff/Assets/blob/main/sd-webui-reactor/0.7.0-whatsnew-02.jpg?raw=true" alt="0.7.0-whatsnew-02" width="100%"/>
|
|
||||||
|
|
||||||
- CUDA 12 Support in the Installer script for 1.17.0 ORT-GPU library
|
|
||||||
- New tab "Detection" with "Threshold" and "Max Faces" parameters
|
|
||||||
|
|
||||||
### 0.6.1 <sub><sup>BETA3
|
|
||||||
|
|
||||||
- 'Force Upscale' option inside the 'Upscale' tab: ReActor will run the Upscaler even if there's no face is detected (FR https://github.com/Gourieff/sd-webui-reactor/issues/116)
|
|
||||||
- ReActor shows filenames of source images in-process when the multiple images mode or the folder mode (random as well) is selected
|
|
||||||
|
|
||||||
### 0.6.1 <sub><sup>BETA2
|
|
||||||
|
|
||||||
- 'Save original' option works fine now when you select 'Multiple Images' or 'Source Folder'
|
|
||||||
- Random Mode for 'Source Folder'
|
|
||||||
|
|
||||||
<img src="https://github.com/Gourieff/Assets/blob/main/sd-webui-reactor/random_from_folder_demo_01.jpg?raw=true" alt="0.6.1-whatsnew-01" width="100%"/>
|
|
||||||
|
|
||||||
### 0.6.0
|
|
||||||
|
|
||||||
- New Logo
|
|
||||||
- Adaptation to A1111 1.7.0 (appropriate GFPGAN loader)
|
|
||||||
- New URL for the main model file
|
|
||||||
- UI reworked
|
|
||||||
- You can now load several source images (with reference faces) or set the path to the folder containing faces images
|
|
||||||
|
|
||||||
<img src="https://github.com/Gourieff/Assets/blob/main/sd-webui-reactor/multiple_source_images_demo_01.png?raw=true" alt="0.6.0-whatsnew-01" width="100%"/>
|
|
||||||
|
|
||||||
<img src="https://github.com/Gourieff/Assets/blob/main/sd-webui-reactor/multiple_source_images_demo_02.png?raw=true" alt="0.6.0-whatsnew-02" width="100%"/>
|
|
||||||
|
|
||||||
### 0.5.1
|
|
||||||
|
|
||||||
- You can save face models as "safetensors" files (stored in `<sd-web-ui-folder>\models\reactor\faces`) and load them into ReActor, keeping super lightweight face models of the faces you use;
|
|
||||||
- "Face Mask Correction" option - if you encounter some pixelation around face contours, this option will be useful;
|
|
||||||
|
|
||||||
<img src="https://github.com/Gourieff/Assets/blob/main/sd-webui-reactor/face_model_demo_01.jpg?raw=true" alt="0.5.0-whatsnew-01" width="100%"/>
|
|
||||||
|
|
||||||
</details>
|
|
||||||
|
|
||||||
## Installation
|
## Installation
|
||||||
|
|
||||||
[A1111 WebUI / WebUI-Forge](#a1111) | [SD.Next](#sdnext) | [Google Colab SD WebUI](#colab)
|
[Automatic1111](#a1111) | [Vladmandic SD.Next](#sdnext) | [Google Colab SD WebUI](#colab)
|
||||||
|
|
||||||
<a name="a1111">If you use [AUTOMATIC1111 SD WebUI](https://github.com/AUTOMATIC1111/stable-diffusion-webui/) or [SD WebUI Forge](https://github.com/lllyasviel/stable-diffusion-webui-forge):
|
<a name="a1111">If you use [AUTOMATIC1111 web-ui](https://github.com/AUTOMATIC1111/stable-diffusion-webui/):
|
||||||
|
|
||||||
1. (For Windows Users):
|
1. (For Windows Users):
|
||||||
- Install **Visual Studio 2022** (Community version, for example - you need this step to build some of dependencies):
|
- Install **Visual Studio 2022** (Community version, for example - you need this step to build some of dependencies):
|
||||||
@ -127,11 +25,11 @@ __Don't forget to enable ReActor and set any source (to prevent "no source" erro
|
|||||||
- OR only **VS C++ Build Tools** (if you don't need the whole Visual Studio) and select "Desktop Development with C++" under "Workloads -> Desktop & Mobile":
|
- OR only **VS C++ Build Tools** (if you don't need the whole Visual Studio) and select "Desktop Development with C++" under "Workloads -> Desktop & Mobile":
|
||||||
https://visualstudio.microsoft.com/visual-cpp-build-tools/
|
https://visualstudio.microsoft.com/visual-cpp-build-tools/
|
||||||
- OR if you don't want to install VS or VS C++ BT - follow [this steps (sec. VIII)](#insightfacebuild)
|
- OR if you don't want to install VS or VS C++ BT - follow [this steps (sec. VIII)](#insightfacebuild)
|
||||||
2. In web-ui, go to the "Extensions" tab, load "Available" extensions and type "ReActor" in the search field or use this URL `https://github.com/Gourieff/sd-webui-reactor` in the "Install from URL" tab - and click "Install"
|
2. In web-ui, go to the "Extensions" tab and use this URL `https://github.com/Gourieff/sd-webui-reactor` in the "Install from URL" tab and click "Install"
|
||||||
3. Please, wait for several minutes until the installation process will be finished (be patient, don't interrupt the process)
|
3. Please, wait for several minutes until the installation process will be finished
|
||||||
4. Check the last message in your SD-WebUI Console:
|
4. Check the last message in your SD-WebUI Console:
|
||||||
* If you see the message "--- PLEASE, RESTART the Server! ---" - so, do it, stop the Server (CTRL+C or CMD+C) and start it again - or just go to the "Installed" tab, click "Apply and restart UI"
|
* If you see the message "--- PLEASE, RESTART the Server! ---" - so, do it, stop the Server (CTRL+C or CMD+C) and start it again - or just go to the "Installed" tab (*if you have any other Roop-based extension enabled - disable it, otherwise this extension won't work*), click "Apply and restart UI"
|
||||||
* If you see the message "Done!", just reload the UI
|
* If you see the message "Done!", just go to the "Installed" tab (*if you have any other Roop-based extension enabled - disable it, otherwise this extension won't work*), click "Apply and restart UI" - or you can just simply reload the UI
|
||||||
5. Enjoy!
|
5. Enjoy!
|
||||||
|
|
||||||
<a name="sdnext">If you use [SD.Next](https://github.com/vladmandic/automatic):
|
<a name="sdnext">If you use [SD.Next](https://github.com/vladmandic/automatic):
|
||||||
@ -141,39 +39,19 @@ __Don't forget to enable ReActor and set any source (to prevent "no source" erro
|
|||||||
3. Go to (Windows)`automatic\venv\Scripts` or (MacOS/Linux)`automatic/venv/bin`, run Terminal or Console (cmd) for that folder and type `activate`
|
3. Go to (Windows)`automatic\venv\Scripts` or (MacOS/Linux)`automatic/venv/bin`, run Terminal or Console (cmd) for that folder and type `activate`
|
||||||
4. Run `pip install insightface==0.7.3`
|
4. Run `pip install insightface==0.7.3`
|
||||||
5. Run SD.Next, go to the "Extensions" tab and use this URL `https://github.com/Gourieff/sd-webui-reactor` in the "Install from URL" tab and click "Install"
|
5. Run SD.Next, go to the "Extensions" tab and use this URL `https://github.com/Gourieff/sd-webui-reactor` in the "Install from URL" tab and click "Install"
|
||||||
6. Please, wait for several minutes until the installation process will be finished (be patient, don't interrupt the process)
|
6. Please, wait for several minutes until the installation process will be finished
|
||||||
7. Check the last message in your SD.Next Console:
|
7. Check the last message in your SD.Next Console:
|
||||||
* If you see the message "--- PLEASE, RESTART the Server! ---" - stop the Server (CTRL+C or CMD+C) or just close your console
|
* If you see the message "--- PLEASE, RESTART the Server! ---" - so, do it, stop the Server (CTRL+C or CMD+C) and start it again - or just go to the "Installed" tab (*if you have any other Roop-based extension enabled - disable it, otherwise this extension won't work*), click "Restart the UI"
|
||||||
8. Go to the `automatic\extensions\sd-webui-reactor` directory - if you see there `models\insightface` folder with the file `inswapper_128.onnx`, just move the file to the `automatic\models\insightface` folder
|
8. Stop SD.Next, go to the `automatic\extensions\sd-webui-reactor` directory - if you see there `models\roop` folder with the file `inswapper_128.onnx`, just move the file to the `automatic\models\roop` folder
|
||||||
9. Run your SD.Next WebUI and enjoy!
|
9. Run your SD.Next WebUI and enjoy!
|
||||||
|
|
||||||
<a name="colab">If you use [Cagliostro Colab UI](https://github.com/Linaqruf/sd-notebook-collection):
|
<a name="colab">If you use [Cagliostro Colab UI](https://github.com/Linaqruf/sd-notebook-collection):
|
||||||
|
|
||||||
1. In active WebUI, go to the "Extensions" tab, load "Available" extensions and type "ReActor" in the search field or use this URL `https://github.com/Gourieff/sd-webui-reactor` in the "Install from URL" tab - and click "Install"
|
1. In active WebUI, go to the "Extensions" tab and use this URL `https://github.com/Gourieff/sd-webui-reactor` in the "Install from URL" tab and click "Install"
|
||||||
2. Please, wait for several minutes until the installation process will be finished (be patient, don't interrupt the process)
|
2. Please, wait for several minutes until the installation process will be finished
|
||||||
3. When you see the message "--- PLEASE, RESTART the Server! ---" (in your Colab Notebook Start UI section "Start Cagliostro Colab UI") - just go to the "Installed" tab and click "Apply and restart UI"
|
3. When you see the message "--- PLEASE, RESTART the Server! ---" (in your Colab Notebook Start UI section "Start Cagliostro Colab UI") - just go to the "Installed" tab and click "Apply and restart UI" (*if you have any other Roop-based extension enabled - disable it before restart, otherwise this extension won't work*)
|
||||||
4. Enjoy!
|
4. Enjoy!
|
||||||
|
|
||||||
## Features
|
|
||||||
|
|
||||||
- Very fast and accurate **face replacement (face swap)** in images
|
|
||||||
- **Multiple faces support**
|
|
||||||
- **Gender detection**
|
|
||||||
- Ability to **save original images** (made before swapping)
|
|
||||||
- **Face restoration** of a swapped face
|
|
||||||
- **Upscaling** of a resulting image
|
|
||||||
- Saving ans loading **Safetensors Face Models**
|
|
||||||
- **Facial Mask Correction** to avoid any pixelation around face contours
|
|
||||||
- Ability to set the **Postprocessing order**
|
|
||||||
- **100% compatibility** with different **SD WebUIs**: Automatic1111, SD.Next, Cagliostro Colab UI
|
|
||||||
- **Fast performance** even with CPU, ReActor for SD WebUI is absolutely not picky about how powerful your GPU is
|
|
||||||
- **CUDA** acceleration support since version 0.5.0
|
|
||||||
- **[API](/API.md) support**: both SD WebUI built-in and external (via POST/GET requests)
|
|
||||||
- **ComfyUI [support](https://github.com/Gourieff/comfyui-reactor-node)**
|
|
||||||
- **Mac M1/M2 [support](https://github.com/Gourieff/sd-webui-reactor/issues/42)**
|
|
||||||
- Console **log level control**
|
|
||||||
- **NSFW filter free** (this extension is aimed at highly developed intellectual people, not at perverts; our society must be oriented on its way towards the highest standards, not the lowest - this is the essence of development and evolution; so, my position is - that mature-minded people are clever enough to understand for themselves what is good and what is bad and take full responsibility for personal actions; for others - no "filters" will help until they do understand how Universe works)
|
|
||||||
|
|
||||||
## Usage
|
## Usage
|
||||||
|
|
||||||
> Using this software you are agree with [disclaimer](#disclaimer)
|
> Using this software you are agree with [disclaimer](#disclaimer)
|
||||||
@ -182,67 +60,43 @@ __Don't forget to enable ReActor and set any source (to prevent "no source" erro
|
|||||||
2. Turn on the "Enable" checkbox;
|
2. Turn on the "Enable" checkbox;
|
||||||
3. That's it, now the generated result will have the face you selected.
|
3. That's it, now the generated result will have the face you selected.
|
||||||
|
|
||||||
<img src="https://github.com/Gourieff/Assets/raw/main/sd-webui-reactor/example.jpg?raw=true" alt="example" width="808"/>
|
<img src="example/example.jpg" alt="example" width="808"/>
|
||||||
|
|
||||||
### Face Indexes
|
**You can use ReActor with Webui API:**
|
||||||
|
1. Check the [SD Web API Wiki](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/API) for how to use API;
|
||||||
ReActor detects faces in images in the following order:<br>
|
2. Call `requests.get(url=f'{address}/sdapi/v1/script-info')` to find the args that ReActor needs;
|
||||||
left->right, top->bottom
|
3. Define ReActor script args and add like this `"alwayson_scripts": {"reactor":{"args":args}}` in the payload;
|
||||||
|
4. Call the API, there's a [full usage example](./example/api_example.py) in the example folder.
|
||||||
And if you need to specify faces, you can set indexes for source and input images.
|
|
||||||
|
|
||||||
Index of the first detected face is 0.
|
|
||||||
|
|
||||||
You can set indexes in the order you need.<br>
|
|
||||||
E.g.: 0,1,2 (for Source); 1,0,2 (for Input).<br>
|
|
||||||
This means: the second Input face (index = 1) will be swapped by the first Source face (index = 0) and so on.
|
|
||||||
|
|
||||||
### Genders
|
|
||||||
|
|
||||||
You can specify the gender to detect in images.<br>
|
|
||||||
ReActor will swap a face only if it meets the given condition.
|
|
||||||
|
|
||||||
### The result face is blurry
|
### The result face is blurry
|
||||||
Use the "Restore Face" option. You can also try the "Upscaler" option or for more finer control, use an upscaler from the "Extras" tab.
|
Use the "Restore Face" option. You can also try the "Upscaler" option or for more finer control, use an upscaler from the "Extras" tab.
|
||||||
You can also set the postproduction order (from 0.1.0 version):
|
You can also set the postproduction order (from 0.1.0 version):
|
||||||
<img src="https://github.com/Gourieff/Assets/raw/main/sd-webui-reactor/pp-order.png?raw=true" alt="example"/>
|
<img src="example/pp-order.png" alt="example"/>
|
||||||
|
|
||||||
*The old logic was the opposite (Upscale -> then Restore), resulting in worse face quality (and big texture differences) after upscaling.*
|
*The old logic was the opposite (Upscale -> then Restore), resulting in worse face quality (and big texture differences) after upscaling.*
|
||||||
|
|
||||||
### There are multiple faces in result
|
### There are multiple faces in result
|
||||||
Select the face numbers you wish to swap using the "Comma separated face number(s)" option for swap-source and result images. You can use different index order.
|
Select the face numbers you wish to swap using the "Comma separated face number(s)" option for swap-source and result images. You can use different index order.
|
||||||
<img src="https://github.com/Gourieff/Assets/raw/main/sd-webui-reactor/multiple-faces.png?raw=true" alt="example"/>
|
<img src="example/multiple-faces.png" alt="example"/>
|
||||||
|
|
||||||
### ~~The result is totally black~~
|
### ~~The result is totally black~~
|
||||||
~~This means NSFW filter detected that your image is NSFW.~~
|
~~This means roop detected that your image is NSFW.~~
|
||||||
|
|
||||||
<img src="https://github.com/Gourieff/Assets/raw/main/sd-webui-reactor/IamSFW.jpg?raw=true" alt="IamSFW" width="50%"/>
|
<img src="example/IamSFW.jpg" alt="IamSFW" width="50%"/>
|
||||||
|
|
||||||
### Img2Img
|
### Img2Img
|
||||||
|
|
||||||
You can choose to activate the swap on the source image or on the generated image, or on both using the checkboxes. Activating on source image allows you to start from a given base and apply the diffusion process to it.
|
You can choose to activate the swap on the source image or on the generated image, or on both using the checkboxes. Activating on source image allows you to start from a given base and apply the diffusion process to it.
|
||||||
|
|
||||||
ReActor works with Inpainting - but only the masked part will be swapped.<br>Please use with the "Only masked" option for "Inpaint area" if you enabled "Upscaler". Otherwise use the upscale option via the Extras tab or via the Script loader (below the screen) with "SD upscale" or "Ultimate SD upscale".
|
Inpainting should work but only the masked part will be swapped.
|
||||||
|
|
||||||
### Extras Tab
|
|
||||||
|
|
||||||
From the version 0.5.0 you can use ReActor via the Extras Tab. It gives a superfast perfomance and ability to swap face2image avoiding SD pipeline that can cause smushing of original image's details
|
|
||||||
|
|
||||||
<img src="https://github.com/Gourieff/Assets/raw/main/sd-webui-reactor/extras_tab.jpg?raw=true" alt="IamSFW"/>
|
|
||||||
|
|
||||||
## API
|
|
||||||
|
|
||||||
You can use ReActor with the built-in Webui API or via an external API.
|
|
||||||
|
|
||||||
Please follow **[this](/API.md)** page for the detailed instruction.
|
|
||||||
|
|
||||||
## Troubleshooting
|
## Troubleshooting
|
||||||
|
|
||||||
### **I. "You should at least have one model in models directory"**
|
**I. "You should at least have one model in models directory"**
|
||||||
|
|
||||||
Please, check the path where "inswapper_128.onnx" model is stored. It must be inside the folder `stable-diffusion-webui\models\insightface`. Move the model there if it's stored in a different directory.
|
Please, check the path where "inswapper_128.onnx" model is stored. It must be inside the folder `stable-diffusion-webui\models\roop`. Move the model there if it's stored in a different directory.
|
||||||
|
|
||||||
### **II. Any problems with installing Insightface or other dependencies**
|
**II. Any problems with installing Insightface or other dependencies**
|
||||||
|
|
||||||
(for Mac M1/M2 users) If you get errors when trying to install Insightface - please read https://github.com/Gourieff/sd-webui-reactor/issues/42
|
(for Mac M1/M2 users) If you get errors when trying to install Insightface - please read https://github.com/Gourieff/sd-webui-reactor/issues/42
|
||||||
|
|
||||||
@ -258,47 +112,47 @@ Please, check the path where "inswapper_128.onnx" model is stored. It must be in
|
|||||||
6. Update your pip at first: `pip install -U pip`
|
6. Update your pip at first: `pip install -U pip`
|
||||||
7. Then one-by-one:
|
7. Then one-by-one:
|
||||||
- `pip install insightface==0.7.3`
|
- `pip install insightface==0.7.3`
|
||||||
- `pip install onnx`
|
- `pip install onnx==1.14.0`
|
||||||
- `pip install "onnxruntime-gpu>=1.16.1"`
|
- `pip install onnxruntime==1.15.0`
|
||||||
- `pip install opencv-python`
|
- `pip install opencv-python==4.7.0.72`
|
||||||
- `pip install tqdm`
|
- `pip install tqdm`
|
||||||
8. Type `deactivate`, you can close your Terminal or Console and start your SD WebUI, ReActor should start OK - if not, welcome to the Issues section.
|
8. Type `deactivate`, you can close your Terminal or Console and start your SD WebUI, ReActor should start OK - if not, welcome to the Issues section.
|
||||||
|
|
||||||
### **III. "TypeError: UpscaleOptions.init() got an unexpected keyword argument 'do_restore_first'"**
|
**III. "TypeError: UpscaleOptions.init() got an unexpected keyword argument 'do_restore_first'"**
|
||||||
|
|
||||||
First of all - you need to disable any other Roop-based extensions:
|
First of all - you need to disable any other Roop-based extensions:
|
||||||
- Go to 'Extensions -> Installed' tab and uncheck any Roop-based extensions except this one
|
- Go to 'Extensions -> Installed' tab and uncheck any Roop-based extensions except this one
|
||||||
<img src="https://github.com/Gourieff/Assets/raw/main/sd-webui-reactor/roop-off.png?raw=true" alt="uncompatible-with-other-roop"/>
|
<img src="example/roop-off.png" alt="uncompatible-with-other-roop"/>
|
||||||
- Click 'Apply and restart UI'
|
- Click 'Apply and restart UI'
|
||||||
|
|
||||||
Alternative solutions:
|
Alternative solutions:
|
||||||
- https://github.com/Gourieff/sd-webui-reactor/issues/3#issuecomment-1615919243
|
- https://github.com/Gourieff/sd-webui-reactor/issues/3#issuecomment-1615919243
|
||||||
- https://github.com/Gourieff/sd-webui-reactor/issues/39#issuecomment-1666559134 (can be actual, if you use Vladmandic SD.Next)
|
- https://github.com/Gourieff/sd-webui-reactor/issues/39#issuecomment-1666559134 (can be actual, if you use Vladmandic SD.Next)
|
||||||
|
|
||||||
### **IV. "AttributeError: 'FaceSwapScript' object has no attribute 'enable'"**
|
**IV. "AttributeError: 'FaceSwapScript' object has no attribute 'enable'"**
|
||||||
|
|
||||||
Probably, you need to disable the "SD-CN-Animation" extension (or perhaps some another that causes the conflict)
|
You need to disable the "SD-CN-Animation" extension (or perhaps some another that causes the conflict)
|
||||||
|
|
||||||
### **V. "INVALID_PROTOBUF : Load model from <...>\models\insightface\inswapper_128.onnx failed:Protobuf parsing failed" OR "AttributeError: 'NoneType' object has no attribute 'get'" OR "AttributeError: 'FaceSwapScript' object has no attribute 'save_original'"**
|
**V. "INVALID_PROTOBUF : Load model from <...>\models/roop\inswapper_128.onnx failed:Protobuf parsing failed"**
|
||||||
|
|
||||||
This error may occur if there's smth wrong with the model file `inswapper_128.onnx`
|
This error may occur if there's smth wrong with the model file `inswapper_128.onnx`
|
||||||
|
|
||||||
Try to download it manually from [here](https://huggingface.co/datasets/Gourieff/ReActor/resolve/main/models/inswapper_128.onnx)
|
Try to download it manually from [here](https://huggingface.co/henryruhs/roop/resolve/main/inswapper_128.onnx)
|
||||||
and put it to the `stable-diffusion-webui\models\insightface` replacing existing one
|
and put it to the `stable-diffusion-webui\models\roop` replacing existing one
|
||||||
|
|
||||||
### **VI. "ValueError: This ORT build has ['TensorrtExecutionProvider', 'CUDAExecutionProvider', 'CPUExecutionProvider'] enabled" OR "ValueError: This ORT build has ['AzureExecutionProvider', 'CPUExecutionProvider'] enabled"**
|
**VI. "ValueError: This ORT build has ['TensorrtExecutionProvider', 'CUDAExecutionProvider', 'CPUExecutionProvider'] enabled"**
|
||||||
|
|
||||||
1. Close (stop) your SD WebUI Server if it's running
|
1. Close (stop) your SD WebUI Server if it's running
|
||||||
2. Go to the (Windows)`venv\Lib\site-packages` or (MacOS/Linux)`venv/lib/python3.10/site-packages` and see if there are any folders with names start from "~" (for example "~rotobuf"), delete them
|
2. Go to the (Windows)`venv\Lib\site-packages` or (MacOS/Linux)`venv/lib/python3.10/site-packages` and see if there are any folders with names start from "~" (for example "~rotobuf"), delete them
|
||||||
3. Go to the (Windows)`venv\Scripts` or (MacOS/Linux)`venv/bin` run Terminal or Console (cmd) there and type `activate`
|
3. Go to the (Windows)`venv\Scripts` or (MacOS/Linux)`venv/bin` run Terminal or Console (cmd) there and type `activate`
|
||||||
4. Then:
|
4. Then:
|
||||||
- `python -m pip install -U pip`
|
- `python -m pip install -U pip`
|
||||||
- `pip uninstall -y onnxruntime onnxruntime-gpu onnxruntime-silicon onnxruntime-extensions`
|
- `pip uninstall -y onnx onnxruntime onnxruntime-gpu onnxruntime-silicon`
|
||||||
- `pip install "onnxruntime-gpu>=1.16.1"`
|
- `pip install onnx==1.14.0 onnxruntime==1.15.0`
|
||||||
|
|
||||||
If it didn't help - it seems that you have another extension reinstalling `onnxruntime` when SD WebUI checks requirements. Please see your extensions list. Some extensions can causes reinstalling of `onnxruntime-gpu` to `onnxruntime<1.16.1` every time SD WebUI runs.<br>ORT 1.16.0 has a bug https://github.com/microsoft/onnxruntime/issues/17631 - don't install it!
|
If it didn't help - it seems that you have another extension reinstalling `onnxruntime` when SD WebUI checks requirements. Please see your extensions list. If you find there "WD14 tagger" - try to disable it and then follow the steps above once again. This extension causes reinstalling of `onnxruntime` to `onnxruntime-gpu` every time SD WebUI runs.
|
||||||
|
|
||||||
### **VII. "ImportError: cannot import name 'builder' from 'google.protobuf.internal'"**
|
**VII. "ImportError: cannot import name 'builder' from 'google.protobuf.internal'"**
|
||||||
|
|
||||||
1. Close (stop) your SD WebUI Server if it's running
|
1. Close (stop) your SD WebUI Server if it's running
|
||||||
2. Go to the (Windows)`venv\Lib\site-packages` or (MacOS/Linux)`venv/lib/python3.10/site-packages` and see if there are any folders with names start from "~" (for example "~rotobuf"), delete them
|
2. Go to the (Windows)`venv\Lib\site-packages` or (MacOS/Linux)`venv/lib/python3.10/site-packages` and see if there are any folders with names start from "~" (for example "~rotobuf"), delete them
|
||||||
@ -307,22 +161,20 @@ If it didn't help - it seems that you have another extension reinstalling `onnxr
|
|||||||
5. Then:
|
5. Then:
|
||||||
- `python -m pip install -U pip`
|
- `python -m pip install -U pip`
|
||||||
- `pip uninstall protobuf`
|
- `pip uninstall protobuf`
|
||||||
- `pip install "protobuf>=3.20.3"`
|
- `pip install protobuf==3.20.3`
|
||||||
|
|
||||||
If this method doesn't help - there is some other extension that has a wrong version of protobuf dependence and SD WebUI installs it on a startup requirements check
|
If this method doesn't help - there is some other extension that has a higher version of protobuf dependence and SD WebUI installs it on a startup requirements check
|
||||||
|
|
||||||
<a name="insightfacebuild">
|
<a name="insightfacebuild">**VIII. (For Windows users) If you still cannot build Insightface for some reasons or just don't want to install Visual Studio or VS C++ Build Tools - do the following:**
|
||||||
|
|
||||||
### **VIII. (For Windows users) If you still cannot build Insightface for some reasons or just don't want to install Visual Studio or VS C++ Build Tools - do the following:**
|
|
||||||
|
|
||||||
1. Close (stop) your SD WebUI Server if it's running
|
1. Close (stop) your SD WebUI Server if it's running
|
||||||
2. Download and put [prebuilt Insightface package](https://github.com/Gourieff/Assets/raw/main/Insightface/insightface-0.7.3-cp310-cp310-win_amd64.whl) into the stable-diffusion-webui (or SD.Next) root folder where you have "webui-user.bat" file or (A1111 Portable) "run.bat"
|
2. Download and put [prebuilt Insightface package](https://github.com/Gourieff/sd-webui-reactor/raw/main/example/insightface-0.7.3-cp310-cp310-win_amd64.whl) into the stable-diffusion-webui (or SD.Next) root folder (where you have "webui-user.bat" file)
|
||||||
3. From stable-diffusion-webui (or SD.Next) root folder run CMD and `.\venv\Scripts\activate`<br>OR<br>(A1111 Portable) Run CMD
|
3. From stable-diffusion-webui (or SD.Next) root folder run CMD and `.\venv\Scripts\activate`
|
||||||
4. Then update your PIP: `python -m pip install -U pip`<br>OR<br>(A1111 Portable)`system\python\python.exe -m pip install -U pip`
|
4. Then update your PIP: `python -m pip install -U pip`
|
||||||
5. Then install Insightface: `pip install insightface-0.7.3-cp310-cp310-win_amd64.whl`<br>OR<br>(A1111 Portable)`system\python\python.exe -m pip install insightface-0.7.3-cp310-cp310-win_amd64.whl`
|
5. Then install Insightface: `pip install insightface-0.7.3-cp310-cp310-win_amd64.whl`
|
||||||
6. Enjoy!
|
6. Enjoy!
|
||||||
|
|
||||||
### **IX. 07-August-23 Update problem**
|
**IX. 07-August Update problem**
|
||||||
|
|
||||||
If after `git pull` you see the message: `Merge made by the 'recursive' strategy` and then when you check `git status` you see `Your branch is ahead of 'origin/main' by`
|
If after `git pull` you see the message: `Merge made by the 'recursive' strategy` and then when you check `git status` you see `Your branch is ahead of 'origin/main' by`
|
||||||
|
|
||||||
@ -336,9 +188,6 @@ OR
|
|||||||
|
|
||||||
Just delete the folder `sd-webui-reactor` inside the `extensions` directory and then run Terminal or Console (cmd) and type `git clone https://github.com/Gourieff/sd-webui-reactor`
|
Just delete the folder `sd-webui-reactor` inside the `extensions` directory and then run Terminal or Console (cmd) and type `git clone https://github.com/Gourieff/sd-webui-reactor`
|
||||||
|
|
||||||
### **X. StabilityMatrix Issues**
|
|
||||||
|
|
||||||
If you encounter any issues with installing this extension in the StabilityMatrix package manager - read here how to solve: https://github.com/Gourieff/sd-webui-reactor/issues/129#issuecomment-1768210875
|
|
||||||
|
|
||||||
## Updating
|
## Updating
|
||||||
|
|
||||||
@ -346,14 +195,14 @@ A good and quick way to check for Extensions updates: https://github.com/Gourief
|
|||||||
|
|
||||||
## ComfyUI
|
## ComfyUI
|
||||||
|
|
||||||
You can use ReActor with ComfyUI.<br>
|
You can use ReActor with ComfyUI
|
||||||
For the installation instruction follow the [ReActor Node repo](https://github.com/Gourieff/comfyui-reactor-node)
|
For the installation instruction follow the [ReActor Node repo](https://github.com/Gourieff/comfyui-reactor-node)
|
||||||
|
|
||||||
## Disclaimer
|
## Disclaimer
|
||||||
|
|
||||||
This software is meant to be a productive contribution to the rapidly growing AI-generated media industry. It will help artists with tasks such as animating a custom character or using the character as a model for clothing etc.
|
This software is meant to be a productive contribution to the rapidly growing AI-generated media industry. It will help artists with tasks such as animating a custom character or using the character as a model for clothing etc.
|
||||||
|
|
||||||
The developers of this software are aware of its possible unethical application and are committed to take preventative measures against them. We will continue to develop this project in the positive direction while adhering to law and ethics.
|
The developers of this software are aware of its possible unethical applicaitons and are committed to take preventative measures against them. We will continue to develop this project in the positive direction while adhering to law and ethics.
|
||||||
|
|
||||||
Users of this software are expected to use this software responsibly while abiding the local law. If face of a real person is being used, users are suggested to get consent from the concerned person and clearly mention that it is a deepfake when posting content online. **Developers and Contributors of this software are not responsible for actions of end-users.**
|
Users of this software are expected to use this software responsibly while abiding the local law. If face of a real person is being used, users are suggested to get consent from the concerned person and clearly mention that it is a deepfake when posting content online. **Developers and Contributors of this software are not responsible for actions of end-users.**
|
||||||
|
|
||||||
@ -363,58 +212,3 @@ By using this extension you are agree not to create any content that:
|
|||||||
- propogates (spreads) any information (both public or personal) or images (both public or personal) which could be meant for harm;
|
- propogates (spreads) any information (both public or personal) or images (both public or personal) which could be meant for harm;
|
||||||
- spreads misinformation;
|
- spreads misinformation;
|
||||||
- targets vulnerable groups of people.
|
- targets vulnerable groups of people.
|
||||||
|
|
||||||
This software utilizes the pre-trained models `buffalo_l` and `inswapper_128.onnx`, which are provided by [InsightFace](https://github.com/deepinsight/insightface/). These models are included under the following conditions:
|
|
||||||
|
|
||||||
[From insighface licence](https://github.com/deepinsight/insightface/tree/master/python-package): The InsightFace’s pre-trained models are available for non-commercial research purposes only. This includes both auto-downloading models and manually downloaded models.
|
|
||||||
|
|
||||||
Users of this software must strictly adhere to these conditions of use. The developers and maintainers of this software are not responsible for any misuse of InsightFace’s pre-trained models.
|
|
||||||
|
|
||||||
Please note that if you intend to use this software for any commercial purposes, you will need to train your own models or find models that can be used commercially.
|
|
||||||
|
|
||||||
### Models Hashsum
|
|
||||||
|
|
||||||
#### Safe-to-use models have the folowing hash:
|
|
||||||
|
|
||||||
inswapper_128.onnx
|
|
||||||
```
|
|
||||||
MD5:a3a155b90354160350efd66fed6b3d80
|
|
||||||
SHA256:e4a3f08c753cb72d04e10aa0f7dbe3deebbf39567d4ead6dce08e98aa49e16af
|
|
||||||
```
|
|
||||||
|
|
||||||
1k3d68.onnx
|
|
||||||
|
|
||||||
```
|
|
||||||
MD5:6fb94fcdb0055e3638bf9158e6a108f4
|
|
||||||
SHA256:df5c06b8a0c12e422b2ed8947b8869faa4105387f199c477af038aa01f9a45cc
|
|
||||||
```
|
|
||||||
|
|
||||||
2d106det.onnx
|
|
||||||
|
|
||||||
```
|
|
||||||
MD5:a3613ef9eb3662b4ef88eb90db1fcf26
|
|
||||||
SHA256:f001b856447c413801ef5c42091ed0cd516fcd21f2d6b79635b1e733a7109dbf
|
|
||||||
```
|
|
||||||
|
|
||||||
det_10g.onnx
|
|
||||||
|
|
||||||
```
|
|
||||||
MD5:4c10eef5c9e168357a16fdd580fa8371
|
|
||||||
SHA256:5838f7fe053675b1c7a08b633df49e7af5495cee0493c7dcf6697200b85b5b91
|
|
||||||
```
|
|
||||||
|
|
||||||
genderage.onnx
|
|
||||||
|
|
||||||
```
|
|
||||||
MD5:81c77ba87ab38163b0dec6b26f8e2af2
|
|
||||||
SHA256:4fde69b1c810857b88c64a335084f1c3fe8f01246c9a191b48c7bb756d6652fb
|
|
||||||
```
|
|
||||||
|
|
||||||
w600k_r50.onnx
|
|
||||||
|
|
||||||
```
|
|
||||||
MD5:80248d427976241cbd1343889ed132b3
|
|
||||||
SHA256:4c06341c33c2ca1f86781dab0e829f88ad5b64be9fba56e56bc9ebdefc619e43
|
|
||||||
```
|
|
||||||
|
|
||||||
**Please check hashsums if you download these models from unverified (or untrusted) sources**
|
|
||||||
|
|||||||
427
README_RU.md
427
README_RU.md
@ -1,427 +0,0 @@
|
|||||||
<div align="center">
|
|
||||||
|
|
||||||
<img src="https://github.com/Gourieff/Assets/raw/main/sd-webui-reactor/ReActor_logo_NEW_RU.png?raw=true" alt="logo" width="180px"/>
|
|
||||||
|
|
||||||

|
|
||||||
|
|
||||||
<a href="https://boosty.to/artgourieff" target="_blank">
|
|
||||||
<img src="https://lovemet.ru/www/boosty.jpg" width="108" alt="Поддержать проект на Boosty"/>
|
|
||||||
<br>
|
|
||||||
<sup>
|
|
||||||
Поддержать проект
|
|
||||||
</sup>
|
|
||||||
</a>
|
|
||||||
|
|
||||||
<hr>
|
|
||||||
|
|
||||||
[](https://github.com/Gourieff/sd-webui-reactor/commits/main)
|
|
||||||

|
|
||||||
[](https://github.com/Gourieff/sd-webui-reactor/issues?cacheSeconds=0)
|
|
||||||
[](https://github.com/Gourieff/sd-webui-reactor/issues?q=is%3Aissue+is%3Aclosed)
|
|
||||||

|
|
||||||
|
|
||||||
[English](/README.md) | Русский
|
|
||||||
|
|
||||||
# ReActor для Stable Diffusion
|
|
||||||
### Расширение для быстрой и простой замены лиц на любых изображениях. Без фильтра цензуры, 18+, используйте под вашу собственную [ответственность](#disclaimer)
|
|
||||||
|
|
||||||
---
|
|
||||||
<b>
|
|
||||||
<a href="#latestupdate">Что нового</a> | <a href="#installation">Установка</a> | <a href="#features">Возможности</a> | <a href="#usage">Использование</a> | <a href="#api">API</a> | <a href="#troubleshooting">Устранение проблем</a> | <a href="#updating">Обновление</a> | <a href="#comfyui">ComfyUI</a> | <a href="#disclaimer">Ответственность</a>
|
|
||||||
</b>
|
|
||||||
</div>
|
|
||||||
|
|
||||||
---
|
|
||||||
|
|
||||||
<img src="https://github.com/Gourieff/Assets/raw/main/sd-webui-reactor/demo_crop.jpg?raw=true" alt="example"/>
|
|
||||||
|
|
||||||
<a name="latestupdate">
|
|
||||||
|
|
||||||
## Что нового в последних обновлениях
|
|
||||||
|
|
||||||
### 0.7.1 <sub><sup>BETA1
|
|
||||||
|
|
||||||
- Использование пробелов в индексах лиц (пример: 0, 1, 2)
|
|
||||||
- Список моделей лиц теперь отсортирован по алфавиту
|
|
||||||
- [API для создания моделей лиц](./API.md#facemodel-build-api)
|
|
||||||
- Правки и улучшения
|
|
||||||
|
|
||||||
<details>
|
|
||||||
<summary><a>Нажмите, чтобы посмотреть больше</a></summary>
|
|
||||||
|
|
||||||
### 0.7.0 <sub><sup>BETA2
|
|
||||||
|
|
||||||
- X/Y/Z опция улучшена! Добавлен ещё один параметр: теперь вы можете выбрать несколько моделей лиц для создания вариации замененных лиц, чтобы выбрать наилучшие!
|
|
||||||
|
|
||||||
<img src="https://github.com/Gourieff/Assets/blob/main/sd-webui-reactor/0.7.0-whatsnew-05.jpg?raw=true" alt="0.7.0-whatsnew-05" width="100%"/>
|
|
||||||
|
|
||||||
Чтобы использовать ось "Face Model" - активируйте РеАктор и выбирите любую модель лица в качестве источника:<br>
|
|
||||||
<img src="https://github.com/Gourieff/Assets/blob/main/sd-webui-reactor/0.7.0-whatsnew-07.jpg?raw=true" alt="0.7.0-whatsnew-07" width="50%"/><img src="https://github.com/Gourieff/Assets/blob/main/sd-webui-reactor/0.7.0-whatsnew-06.jpg?raw=true" alt="0.7.0-whatsnew-06" width="50%"/>
|
|
||||||
|
|
||||||
Полноразмерное демо-изображение: [xyz_demo_2.png](https://raw.githubusercontent.com/Gourieff/Assets/main/sd-webui-reactor/xyz_demo_2.png)
|
|
||||||
|
|
||||||
### 0.7.0 <sub><sup>BETA1
|
|
||||||
|
|
||||||
- Поддержка X/Y/Z скрипта (до 3-х параметров: CodeFormer Weight, Restorer Visibility, Face Mask Correction)
|
|
||||||
|
|
||||||
<img src="https://github.com/Gourieff/Assets/blob/main/sd-webui-reactor/0.7.0-whatsnew-03.jpg?raw=true" alt="0.7.0-whatsnew-03" width="100%"/>
|
|
||||||
|
|
||||||
Полноразмерное демо-изображение: [xyz_demo.png](https://raw.githubusercontent.com/Gourieff/Assets/main/sd-webui-reactor/xyz_demo.png)
|
|
||||||
|
|
||||||
### 0.7.0 <sub><sup>ALPHA1
|
|
||||||
|
|
||||||
- По многочисленным просьбам появилась возможность строить смешанные модели лиц ("Tools->Face Models->Blend")
|
|
||||||
|
|
||||||
<img src="https://github.com/Gourieff/Assets/blob/main/sd-webui-reactor/0.7.0-whatsnew-01.jpg?raw=true" alt="0.7.0-whatsnew-01" width="100%"/><img src="https://github.com/Gourieff/Assets/blob/main/sd-webui-reactor/0.7.0-whatsnew-02.jpg?raw=true" alt="0.7.0-whatsnew-02" width="100%"/>
|
|
||||||
|
|
||||||
- Поддержка CUDA 12 в скрипте установщика для библиотеки ORT-GPU версии 1.17.0
|
|
||||||
- Новая вкладка "Detection" с параметрами "Threshold" и "Max Faces"
|
|
||||||
|
|
||||||
### 0.6.1 <sub><sup>BETA3
|
|
||||||
|
|
||||||
- Опция 'Force Upscale' внутри вкладки 'Upscale': апскейл выполнится, даже если не было обнаружено ни одного лица (FR https://github.com/Gourieff/sd-webui-reactor/issues/116)
|
|
||||||
- Отображение имён файлов используемых изображений, когда выбрано несколько изображений или папка (а также режим случайного изображения)
|
|
||||||
|
|
||||||
### 0.6.1 <sub><sup>BETA2
|
|
||||||
|
|
||||||
- Опция 'Save original' теперь работает правильно, когда вы выбираете 'Multiple Images' или 'Source Folder'
|
|
||||||
- Добавлен режим выбора случайного изображения для 'Source Folder'
|
|
||||||
|
|
||||||
<img src="https://github.com/Gourieff/Assets/blob/main/sd-webui-reactor/random_from_folder_demo_01.jpg?raw=true" alt="0.6.1-whatsnew-01" width="100%"/>
|
|
||||||
|
|
||||||
### 0.6.0
|
|
||||||
|
|
||||||
- Новый логотип
|
|
||||||
- Адаптация к версии A1111 1.7.0 (правильная загрузка GFPGAN)
|
|
||||||
- Новая ссылка для файла основной модели
|
|
||||||
- UI переработан
|
|
||||||
- Появилась возможность загружать несколько исходных изображений с лицами или задавать путь к папке, содержащей такие изображения
|
|
||||||
|
|
||||||
<img src="https://github.com/Gourieff/Assets/blob/main/sd-webui-reactor/multiple_source_images_demo_01.png?raw=true" alt="0.6.0-whatsnew-01" width="100%"/>
|
|
||||||
|
|
||||||
<img src="https://github.com/Gourieff/Assets/blob/main/sd-webui-reactor/multiple_source_images_demo_02.png?raw=true" alt="0.6.0-whatsnew-02" width="100%"/>
|
|
||||||
|
|
||||||
### 0.5.1
|
|
||||||
|
|
||||||
- Теперь можно сохранять модели лиц в качестве файлов "safetensors" (находятся в `<sd-web-ui-folder>\models\reactor\faces`) и загружать их с ReActor, храня супер легкие модели лиц, которые вы чаще всего используете;
|
|
||||||
- Новые опция "Face Mask Correction" - если вы сталкиваетесь с пикселизацией вокруг контуров лица, эта опция будет полезной;
|
|
||||||
|
|
||||||
<img src="https://github.com/Gourieff/Assets/blob/main/sd-webui-reactor/face_model_demo_01.jpg?raw=true" alt="0.5.0-whatsnew-01" width="100%"/>
|
|
||||||
|
|
||||||
</details>
|
|
||||||
|
|
||||||
<a name="installation">
|
|
||||||
|
|
||||||
## Установка
|
|
||||||
|
|
||||||
[A1111 WebUI / WebUI-Forge](#a1111) | [SD.Next](#sdnext) | [Google Colab SD WebUI](#colab)
|
|
||||||
|
|
||||||
<a name="a1111">Если вы используете [AUTOMATIC1111 SD WebUI](https://github.com/AUTOMATIC1111/stable-diffusion-webui/) или [SD WebUI Forge](https://github.com/lllyasviel/stable-diffusion-webui-forge):
|
|
||||||
|
|
||||||
1. (Для пользователей Windows):
|
|
||||||
- Установите **Visual Studio 2022** (Например, версию Community - этот шаг нужен для правильной компиляции библиотеки Insightface):
|
|
||||||
https://visualstudio.microsoft.com/downloads/
|
|
||||||
- ИЛИ только **VS C++ Build Tools** (если вам не нужен весь пакет Visual Studio), выберите "Desktop Development with C++" в разделе "Workloads -> Desktop & Mobile":
|
|
||||||
https://visualstudio.microsoft.com/visual-cpp-build-tools/
|
|
||||||
- ИЛИ если же вы не хотите устанавливать что-либо из вышеуказанного - выполните [следующие шаги (пункт VIII)](#insightfacebuild)
|
|
||||||
2. Внутри SD Web-UI перейдите во вкладку "Extensions", загрузите список доступных расширений (вкладка "Available") и введите "ReActor" в строке поиска или же вставьте ссылку `https://github.com/Gourieff/sd-webui-reactor` в "Install from URL" - и нажмите "Install"
|
|
||||||
3. Пожалуйста, подождите несколько минут, пока процесс установки полностью не завершится (наберитесь терпения, не прерывайте процесс)
|
|
||||||
4. Проверьте последнее сообщение в консоли SD-WebUI:
|
|
||||||
* Если вы видите "--- PLEASE, RESTART the Server! ---" - остановите Сервер (CTRL+C или CMD+C) и запустите его заново - ИЛИ же перейдите во вкладку "Installed", нажмите "Apply and restart UI"
|
|
||||||
* Если вы видите "Done!", просто перезагрузите UI, нажав на "Reload UI"
|
|
||||||
5. Готово!
|
|
||||||
|
|
||||||
<a name="sdnext">Если вы используете [SD.Next](https://github.com/vladmandic/automatic):
|
|
||||||
|
|
||||||
1. Закройте (остановите) SD WebUI Сервер, если он запущен
|
|
||||||
2. (Для пользователей Windows) Смотрите [Шаг 1](#a1111) для Automatic1111 (если же вы следовали [данным шагам (пункт VIII)](#insightfacebuild) вместо этого - переходите к Шагу 5)
|
|
||||||
3. Перейдите в (Windows)`automatic\venv\Scripts` или (MacOS/Linux)`automatic/venv/bin`, запустите Терминал или Консоль (cmd) для данной папки и выполните `activate`
|
|
||||||
4. Выполните `pip install insightface==0.7.3`
|
|
||||||
5. Запустите SD.Next, перейдите во вкладку "Extensions", вставьте эту ссылку `https://github.com/Gourieff/sd-webui-reactor` в "Install from URL" и нажмите "Install"
|
|
||||||
6. Пожалуйста, подождите несколько минут, пока процесс установки полностью не завершится (наберитесь терпения, не прерывайте процесс)
|
|
||||||
7. Проверьте последнее сообщение в консоли SD.Next:
|
|
||||||
* Если вы видите "--- PLEASE, RESTART the Server! ---" - остановите Сервер (CTRL+C или CMD+C) или просто закройте консоль
|
|
||||||
8. Перейдите в директорию `automatic\extensions\sd-webui-reactor` - если вы видите там папку `models\insightface` с файлом `inswapper_128.onnx` внутри, переместите его в папку `automatic\models\insightface`
|
|
||||||
9. Готово, можете запустить SD.Next WebUI!
|
|
||||||
|
|
||||||
<a name="colab">Если вы используете [Cagliostro Colab UI](https://github.com/Linaqruf/sd-notebook-collection):
|
|
||||||
|
|
||||||
1. В активном WebUI перейдите во вкладку "Extensions", загрузите список доступных расширений (вкладка "Available") и введите "ReActor" в строке поиска или же вставьте ссылку `https://github.com/Gourieff/sd-webui-reactor` в "Install from URL" - и нажмите "Install"
|
|
||||||
2. Пожалуйста, подождите некоторое время, пока процесс установки полностью не завершится (наберитесь терпения, не прерывайте процесс)
|
|
||||||
3. Когда вы увидите сообщение "--- PLEASE, RESTART the Server! ---" (в секции "Start UI" вашего ноутбука "Start Cagliostro Colab UI") - перейдите во вкладку "Installed" и нажмите "Apply and restart UI"
|
|
||||||
4. Готово!
|
|
||||||
|
|
||||||
<a name="features">
|
|
||||||
|
|
||||||
## Возможности
|
|
||||||
|
|
||||||
- Быстрая и точна **замена лиц (faceswap)** на изображении
|
|
||||||
- **Поддержка нескольких лиц**
|
|
||||||
- **Определение пола**
|
|
||||||
- Функция **сохранения оригинального изображения** (сгенерированного до замены лица)
|
|
||||||
- **Восстановление лица** после замены
|
|
||||||
- **Увеличение размера** полученного изображения
|
|
||||||
- Сохранение и загрузка **Моделей Лиц типа Safetensors**
|
|
||||||
- **Коррекция Маски Лица** для предотвращения какой-либо пикселизации вокруг контуров лиц
|
|
||||||
- Возможность задать **порядок постобработки**
|
|
||||||
- **100% совместимость** с разными **SD WebUI**: Automatic1111, SD.Next, Cagliostro Colab UI
|
|
||||||
- **Отличная производительность** даже с использованием ЦПУ, ReActor для SD WebUI абсолютно не требователен к мощности вашей видеокарты
|
|
||||||
- **Поддержка CUDA**, начиная с версии 0.5.0
|
|
||||||
- **Поддержка [API](/API.md)**: как встроенного в SD WebUI, так и внешнего (через POST/GET запросы)
|
|
||||||
- **[Поддержка](https://github.com/Gourieff/comfyui-reactor-node) ComfyUI**
|
|
||||||
- **[Поддержка](https://github.com/Gourieff/sd-webui-reactor/issues/42) компьютеров Mac M1/M2**
|
|
||||||
- **Регулировка уровня логов** консоли
|
|
||||||
- **Без NSFW фильтров** (данное расширение адресовано высокоразвитым интеллектуальным людям, а не извращенцам; наше общество должно быть ориентировано на своём пути на высшие стандарты, а не на низшие - в этом состоит суть развития и эволюции человеческого общества; поэтому, моя позиция такова - что зрелые умом люди достаточно разумны, чтобы понимать, что есть хорошо, а что плохо и нести полную ответственность за собственные действия; для прочих - никакие "фильтры" не помогут, пока эти люди сами не поймут, как работает Вселенная)
|
|
||||||
|
|
||||||
<a name="usage">
|
|
||||||
|
|
||||||
## Использование
|
|
||||||
|
|
||||||
> Используя данное программное обеспечение, вы соглашаетесь с [ответственностью](#disclaimer)
|
|
||||||
|
|
||||||
1. В раскрывающимся меню "ReActor" импортируйте изображение, содержащее лицо;
|
|
||||||
2. Установите флажок "Enable";
|
|
||||||
3. Готово, теперь результат будет иметь то лицо, которое вы выбрали.
|
|
||||||
|
|
||||||
<img src="https://github.com/Gourieff/Assets/raw/main/sd-webui-reactor/example.jpg?raw=true" alt="example" width="808"/>
|
|
||||||
|
|
||||||
### Индексы Лиц (Face Indexes)
|
|
||||||
|
|
||||||
ReActor определяет лица на изображении в следующей последовательности:<br>
|
|
||||||
слева-направо, сверху-вниз.
|
|
||||||
|
|
||||||
Если вам нужно заменить определенное лицо, вы можете указать индекс для исходного (source, с лицом) и входного (input, где будет замена лица) изображений.
|
|
||||||
|
|
||||||
Индекс первого обнаруженного лица - 0.
|
|
||||||
|
|
||||||
Вы можете задать индексы в том порядке, который вам нужен.<br>
|
|
||||||
Например: 0,1,2 (для Source); 1,0,2 (для Input).<br>
|
|
||||||
Это означает, что: второе лицо из Input (индекс = 1) будет заменено первым лицом из Source (индекс = 0) и так далее.
|
|
||||||
|
|
||||||
### Определение Пола
|
|
||||||
|
|
||||||
Вы можете обозначить, какой пол нужно определять на изображении.<br>
|
|
||||||
ReActor заменит только то лицо, которое удовлетворяет заданному условию.
|
|
||||||
|
|
||||||
### Если лицо получилось нечётким
|
|
||||||
Используйте опцию "Restore Face". Также можете попробовать опцию "Upscaler". Для более точного контроля параметров используйте Upscaler во вкладке "Extras".
|
|
||||||
Также вы можете установить порядок постобработки (начиная с версии 0.1.0):
|
|
||||||
<img src="https://github.com/Gourieff/Assets/raw/main/sd-webui-reactor/pp-order.png?raw=true" alt="example"/>
|
|
||||||
|
|
||||||
*Прежняя логика была противоположенной (Upscale -> затем Restore), что приводило к более худшему качеству изображения лица (а также к значительной разнице текстур) после увеличения.*
|
|
||||||
|
|
||||||
### Результат имеет несколько лиц
|
|
||||||
Выберите номера лиц, которые нужно поменять, используя поля "Comma separated face number(s)" для исходного изображения лица и для результата. Можно устанавливать любой, необходимый вам, порядок лиц.
|
|
||||||
<img src="https://github.com/Gourieff/Assets/raw/main/sd-webui-reactor/multiple-faces.png?raw=true" alt="example"/>
|
|
||||||
|
|
||||||
### ~~Результат получился чёрным~~
|
|
||||||
~~Это значит, что сработал NSFW фильтр.~~
|
|
||||||
|
|
||||||
<img src="https://github.com/Gourieff/Assets/raw/main/sd-webui-reactor/IamSFW.jpg?raw=true" alt="IamSFW" width="50%"/>
|
|
||||||
|
|
||||||
### Img2Img
|
|
||||||
|
|
||||||
Используйте эту вкладку, чтобы заменить лицо на уже готовом изображении (флажок "Swap in source image") или на сгенерированном на основе готового (флажок "Swap in generated image").
|
|
||||||
|
|
||||||
Inpainting также работает, но замена лица происходит только в области маски.<br>Пожалуйста, используйте с опцией "Only masked" для "Inpaint area", если вы применяете "Upscaler". Иначе, используйте функцию увеличения (апскейла) через вкладку "Extras" или через опциональный загрузчик "Script" (внизу экрана), применив "SD upscale" или "Ultimate SD upscale".
|
|
||||||
|
|
||||||
### Extras
|
|
||||||
|
|
||||||
Начиная с версии 0.5.0, вы можете использовать ReActor через вкладку Extras, что даёт очень быструю производительность и возможность замены лиц в обход пайплайна SD, что иногда вызывает размытие или искажение деталей оригинального изображения
|
|
||||||
|
|
||||||
<img src="https://github.com/Gourieff/Assets/raw/main/sd-webui-reactor/extras_tab.jpg?raw=true" alt="IamSFW"/>
|
|
||||||
|
|
||||||
## API
|
|
||||||
|
|
||||||
Вы можете использовать ReActor как со встроенным SD Webui API так и через внешнее API.
|
|
||||||
|
|
||||||
Подробная инструкция **[здесь](/API.md)**.
|
|
||||||
|
|
||||||
<a name="troubleshooting">
|
|
||||||
|
|
||||||
## Устранение проблем
|
|
||||||
|
|
||||||
### **I. "You should at least have one model in models directory"**
|
|
||||||
|
|
||||||
Проверьте путь, где хранится модель "inswapper_128.onnx". Файл должен находиться в папке `stable-diffusion-webui\models\insightface`. Переместите модель туда, если она находится в какой-то иной директории.
|
|
||||||
|
|
||||||
### **II. Какие-либо проблемы с установкой Insightface или прочих пакетов**
|
|
||||||
|
|
||||||
(Для пользователей Mac M1/M2) Если вы получаете ошибки в ходе установки Insightface - читайте https://github.com/Gourieff/sd-webui-reactor/issues/42
|
|
||||||
|
|
||||||
(Для пользователей Windows) Если VS C++ Build Tools или MS VS 2022 установлены но вы видите ошибки, связанные с отсутствием Insightface, попробуйте следующее:
|
|
||||||
1. Закройте (остановите) SD WebUI Сервер и запустите его снова (возможно, не прошла инициализация пакета после его установки)
|
|
||||||
|
|
||||||
(Для пользователей любых ОС) Попробуйте следующее:
|
|
||||||
1. Закройте (остановите) SD WebUI Сервер, если он запущен
|
|
||||||
2. Перейдите в папку (Windows)`venv\Lib\site-packages` или (MacOS/Linux)`venv/lib/python3.10/site-packages`
|
|
||||||
3. Если вы видите к-л папки с именами, начинающимися с `~` (например, "~rotobuf") - удалите их
|
|
||||||
4. Перейдите в (Windows)`venv\Scripts` или (MacOS/Linux)`venv/bin`
|
|
||||||
5. Откройте Терминал или Консоль (cmd) для этой папки и выполните `activate`
|
|
||||||
6. Для начала обновите pip: `pip install -U pip`
|
|
||||||
7. Далее:
|
|
||||||
- `pip install insightface==0.7.3`
|
|
||||||
- `pip install onnx`
|
|
||||||
- `pip install "onnxruntime-gpu>=1.16.1"`
|
|
||||||
- `pip install opencv-python`
|
|
||||||
- `pip install tqdm`
|
|
||||||
8. Выполните `deactivate`, закройте Терминал или Консоль и запустите SD WebUI, ReActor должен запуститься без к-л проблем - если же нет, добро пожаловать в раздел "Issues".
|
|
||||||
|
|
||||||
### **III. "TypeError: UpscaleOptions.init() got an unexpected keyword argument 'do_restore_first'"**
|
|
||||||
|
|
||||||
Для начала отключите любые другие Roop-подобные расширения:
|
|
||||||
- Перейдите в 'Extensions -> Installed' и снимите флажок с ненужных:
|
|
||||||
<img src="https://github.com/Gourieff/Assets/raw/main/sd-webui-reactor/roop-off.png?raw=true" alt="uncompatible-with-other-roop"/>
|
|
||||||
- Нажмите 'Apply and restart UI'
|
|
||||||
|
|
||||||
Альтернативные решения:
|
|
||||||
- https://github.com/Gourieff/sd-webui-reactor/issues/3#issuecomment-1615919243
|
|
||||||
- https://github.com/Gourieff/sd-webui-reactor/issues/39#issuecomment-1666559134 (актуально для Vladmandic SD.Next)
|
|
||||||
|
|
||||||
### **IV. "AttributeError: 'FaceSwapScript' object has no attribute 'enable'"**
|
|
||||||
|
|
||||||
Отключите расширение "SD-CN-Animation" (или какое-либо другое, вызывающее конфликт)
|
|
||||||
|
|
||||||
### **V. "INVALID_PROTOBUF : Load model from <...>\models\insightface\inswapper_128.onnx failed:Protobuf parsing failed" ИЛИ "AttributeError: 'NoneType' object has no attribute 'get'" ИЛИ "AttributeError: 'FaceSwapScript' object has no attribute 'save_original'"**
|
|
||||||
|
|
||||||
Эта ошибка появляется, если что-то не так с файлом модели `inswapper_128.onnx`.
|
|
||||||
|
|
||||||
Скачайте вручную по ссылке [here](https://huggingface.co/datasets/Gourieff/ReActor/resolve/main/models/inswapper_128.onnx)
|
|
||||||
и сохраните в директорию `stable-diffusion-webui\models\insightface`, заменив имеющийся файл.
|
|
||||||
|
|
||||||
### **VI. "ValueError: This ORT build has ['TensorrtExecutionProvider', 'CUDAExecutionProvider', 'CPUExecutionProvider'] enabled" ИЛИ "ValueError: This ORT build has ['AzureExecutionProvider', 'CPUExecutionProvider'] enabled"**
|
|
||||||
|
|
||||||
1. Закройте (остановите) SD WebUI Сервер, если он запущен
|
|
||||||
2. Перейдите в (Windows)`venv\Lib\site-packages` или (MacOS/Linux)`venv/lib/python3.10/site-packages` и посмотрите, если там папки с именам, начинающимися на "~" (например, "~rotobuf"), удалите их
|
|
||||||
3. Перейдите в (Windows)`venv\Scripts` или (MacOS/Linux)`venv/bin`, откройте Терминал или Консоль (cmd) и выполните `activate`
|
|
||||||
4. Затем:
|
|
||||||
- `python -m pip install -U pip`
|
|
||||||
- `pip uninstall -y onnxruntime onnxruntime-gpu onnxruntime-silicon onnxruntime-extensions`
|
|
||||||
- `pip install "onnxruntime-gpu>=1.16.1"`
|
|
||||||
|
|
||||||
Если это не помогло - значит какое-то другое расширение переустанавливает `onnxruntime` всякий раз, когда SD WebUI проверяет требования пакетов. Внимательно посмотрите список активных расширений. Некоторые расширения могут вызывать переустановку `onnxruntime-gpu` на версию `onnxruntime<1.16.1` при каждом запуске SD WebUI.<br>ORT 1.16.0 выкатили с ошибкой https://github.com/microsoft/onnxruntime/issues/17631 - не устанавливайте её!
|
|
||||||
|
|
||||||
### **VII. "ImportError: cannot import name 'builder' from 'google.protobuf.internal'"**
|
|
||||||
|
|
||||||
1. Закройте (остановите) SD WebUI Сервер, если он запущен
|
|
||||||
2. Перейдите в (Windows)`venv\Lib\site-packages` или (MacOS/Linux)`venv/lib/python3.10/site-packages` и посмотрите, если там папки с именам, начинающимися на "~" (например, "~rotobuf"), удалите их
|
|
||||||
3. Перейдите в папку "google" (внутри "site-packages") и удалите любые папки с именам, начинающимися на "~"
|
|
||||||
4. Перейдите в (Windows)`venv\Scripts` или (MacOS/Linux)`venv/bin`, откройте Терминал или Консоль (cmd) и выполните `activate`
|
|
||||||
5. Затем:
|
|
||||||
- `python -m pip install -U pip`
|
|
||||||
- `pip uninstall protobuf`
|
|
||||||
- `pip install "protobuf>=3.20.3"`
|
|
||||||
|
|
||||||
Если это не помгло - значит, есть к-л другое расширение, которое использует неподходящую версию пакета protobuf, и SD WebUI устанавливает эту версию при каждом запуске.
|
|
||||||
|
|
||||||
<a name="insightfacebuild">
|
|
||||||
|
|
||||||
### **VIII. (Для пользователей Windows) Если вы до сих пор не можете установить пакет Insightface по каким-то причинам или же просто не желаете устанавливать Visual Studio или VS C++ Build Tools - сделайте следующее:**
|
|
||||||
|
|
||||||
1. Закройте (остановите) SD WebUI Сервер, если он запущен
|
|
||||||
2. Скачайте готовый [пакет Insightface](https://github.com/Gourieff/Assets/raw/main/Insightface/insightface-0.7.3-cp310-cp310-win_amd64.whl) и сохраните его в корневую директорию stable-diffusion-webui (или SD.Next) - туда, где лежит файл "webui-user.bat" или (A1111 Portable) "run.bat"
|
|
||||||
3. Из корневой директории откройте Консоль (CMD) и выполните `.\venv\Scripts\activate`<br>ИЛИ<br>(A1111 Portable) Откройте Консоль (CMD)
|
|
||||||
4. Обновите PIP: `python -m pip install -U pip`<br>ИЛИ<br>(A1111 Portable)`system\python\python.exe -m pip install -U pip`
|
|
||||||
5. Затем установите Insightface: `pip install insightface-0.7.3-cp310-cp310-win_amd64.whl`<br>ИЛИ<br>(A1111 Portable)`system\python\python.exe -m pip install insightface-0.7.3-cp310-cp310-win_amd64.whl`
|
|
||||||
6. Готово!
|
|
||||||
|
|
||||||
### **IX. Ошибка обновления 07-Август-23**
|
|
||||||
|
|
||||||
Если после очередного `git pull` вы получили сообщение: `Merge made by the 'recursive' strategy` и затем, когда проверяете статус репозитория через `git status`, вы видите `Your branch is ahead of 'origin/main' by`
|
|
||||||
|
|
||||||
Выполните следующее:
|
|
||||||
|
|
||||||
Внутри папки `extensions\sd-webui-reactor` запустите Терминал или Консоль (cmd) и затем:
|
|
||||||
- `git reset f48bdf1 --hard`
|
|
||||||
- `git pull`
|
|
||||||
|
|
||||||
ИЛИ:
|
|
||||||
|
|
||||||
Полностью удалите папку `sd-webui-reactor` внутри директории `extensions`, запустите Терминал или Консоль (cmd) и выполните `git clone https://github.com/Gourieff/sd-webui-reactor`
|
|
||||||
|
|
||||||
### **X. Ошибки установки в StabilityMatrix**
|
|
||||||
|
|
||||||
Если вы столкнулись с ошибками при установки данного расширения в пакетном менеджере StabilityMatrix - изучите информацию по ссылке: https://github.com/Gourieff/sd-webui-reactor/issues/129#issuecomment-1768210875
|
|
||||||
|
|
||||||
<a name="updating">
|
|
||||||
|
|
||||||
## Обновление
|
|
||||||
|
|
||||||
Самый простой и удобный способ обновления SD WebUI и расширений: https://github.com/Gourieff/sd-webui-extensions-updater
|
|
||||||
|
|
||||||
## ComfyUI
|
|
||||||
|
|
||||||
Вы можете использовать ReActor с ComfyUI<br>
|
|
||||||
Инструкция здесь: [ReActor Node](https://github.com/Gourieff/comfyui-reactor-node)
|
|
||||||
|
|
||||||
<a name="disclaimer">
|
|
||||||
|
|
||||||
## Ответственность
|
|
||||||
|
|
||||||
Это программное обеспечение призвано стать продуктивным вкладом в быстрорастущую медиаиндустрию на основе генеративных сетей и искусственного интеллекта. Данное ПО поможет художникам в решении таких задач, как анимация собственного персонажа или использование персонажа в качестве модели для одежды и т.д.
|
|
||||||
|
|
||||||
Разработчики этого программного обеспечения осведомлены о возможных неэтичных применениях и обязуются принять против этого превентивные меры. Мы продолжим развивать этот проект в позитивном направлении, придерживаясь закона и этики.
|
|
||||||
|
|
||||||
Подразумевается, что пользователи этого программного обеспечения будут использовать его ответственно, соблюдая локальное законодательство. Если используется лицо реального человека, пользователь обязан получить согласие заинтересованного лица и четко указать, что это дипфейк при размещении контента в Интернете. **Разработчики и Со-авторы данного программного обеспечения не несут ответственности за действия конечных пользователей.**
|
|
||||||
|
|
||||||
Используя данное расширение, вы соглашаетесь не создавать материалы, которые:
|
|
||||||
- нарушают какие-либо действующие законы тех или иных государств или международных организаций;
|
|
||||||
- причиняют какой-либо вред человеку или лицам;
|
|
||||||
- пропагандируют любую информацию (как общедоступную, так и личную) или изображения (как общедоступные, так и личные), которые могут быть направлены на причинение вреда;
|
|
||||||
- используются для распространения дезинформации;
|
|
||||||
- нацелены на уязвимые группы людей.
|
|
||||||
|
|
||||||
Данное программное обеспечение использует предварительно обученные модели `buffalo_l` и `inswapper_128.onnx`, представленные разработчиками [InsightFace](https://github.com/deepinsight/insightface/). Эти модели распространяются при следующих условиях:
|
|
||||||
|
|
||||||
[Перевод из текста лицензии insighface](https://github.com/deepinsight/insightface/tree/master/python-package): Предварительно обученные модели InsightFace доступны только для некоммерческих исследовательских целей. Сюда входят как модели с автоматической загрузкой, так и модели, загруженные вручную.
|
|
||||||
|
|
||||||
Пользователи данного программного обеспечения должны строго соблюдать данные условия использования. Разработчики и Со-авторы данного программного продукта не несут ответственности за неправильное использование предварительно обученных моделей InsightFace.
|
|
||||||
|
|
||||||
Обратите внимание: если вы собираетесь использовать это программное обеспечение в каких-либо коммерческих целях, вам необходимо будет обучить свои собственные модели или найти модели, которые можно использовать в коммерческих целях.
|
|
||||||
|
|
||||||
### Хэш файлов моделей
|
|
||||||
|
|
||||||
#### Безопасные для использования модели имеют следующий хэш:
|
|
||||||
|
|
||||||
inswapper_128.onnx
|
|
||||||
```
|
|
||||||
MD5:a3a155b90354160350efd66fed6b3d80
|
|
||||||
SHA256:e4a3f08c753cb72d04e10aa0f7dbe3deebbf39567d4ead6dce08e98aa49e16af
|
|
||||||
```
|
|
||||||
|
|
||||||
1k3d68.onnx
|
|
||||||
|
|
||||||
```
|
|
||||||
MD5:6fb94fcdb0055e3638bf9158e6a108f4
|
|
||||||
SHA256:df5c06b8a0c12e422b2ed8947b8869faa4105387f199c477af038aa01f9a45cc
|
|
||||||
```
|
|
||||||
|
|
||||||
2d106det.onnx
|
|
||||||
|
|
||||||
```
|
|
||||||
MD5:a3613ef9eb3662b4ef88eb90db1fcf26
|
|
||||||
SHA256:f001b856447c413801ef5c42091ed0cd516fcd21f2d6b79635b1e733a7109dbf
|
|
||||||
```
|
|
||||||
|
|
||||||
det_10g.onnx
|
|
||||||
|
|
||||||
```
|
|
||||||
MD5:4c10eef5c9e168357a16fdd580fa8371
|
|
||||||
SHA256:5838f7fe053675b1c7a08b633df49e7af5495cee0493c7dcf6697200b85b5b91
|
|
||||||
```
|
|
||||||
|
|
||||||
genderage.onnx
|
|
||||||
|
|
||||||
```
|
|
||||||
MD5:81c77ba87ab38163b0dec6b26f8e2af2
|
|
||||||
SHA256:4fde69b1c810857b88c64a335084f1c3fe8f01246c9a191b48c7bb756d6652fb
|
|
||||||
```
|
|
||||||
|
|
||||||
w600k_r50.onnx
|
|
||||||
|
|
||||||
```
|
|
||||||
MD5:80248d427976241cbd1343889ed132b3
|
|
||||||
SHA256:4c06341c33c2ca1f86781dab0e829f88ad5b64be9fba56e56bc9ebdefc619e43
|
|
||||||
```
|
|
||||||
|
|
||||||
**Пожалуйста, сравните хэш, если вы скачиваете данные модели из непроверенных источников**
|
|
||||||
@ -8,7 +8,7 @@ time = datetime.now()
|
|||||||
today = date.today()
|
today = date.today()
|
||||||
current_date = today.strftime('%Y-%m-%d')
|
current_date = today.strftime('%Y-%m-%d')
|
||||||
current_time = time.strftime('%H-%M-%S')
|
current_time = time.strftime('%H-%M-%S')
|
||||||
output = 'outputs/api/output_'+current_date+'_'+current_time # Output file path + name index
|
output_file = 'outputs/api/output_'+current_date+'_'+current_time+'.png' # Output file path
|
||||||
try:
|
try:
|
||||||
im = Image.open(input_file)
|
im = Image.open(input_file)
|
||||||
except Exception as e:
|
except Exception as e:
|
||||||
@ -26,32 +26,16 @@ args=[
|
|||||||
True, #1 Enable ReActor
|
True, #1 Enable ReActor
|
||||||
'0', #2 Comma separated face number(s) from swap-source image
|
'0', #2 Comma separated face number(s) from swap-source image
|
||||||
'0', #3 Comma separated face number(s) for target image (result)
|
'0', #3 Comma separated face number(s) for target image (result)
|
||||||
'C:\stable-diffusion-webui\models\insightface\inswapper_128.onnx', #4 model path
|
'C:\stable-diffusion-webui\models/roop\inswapper_128.onnx', #4 model path
|
||||||
'CodeFormer', #4 Restore Face: None; CodeFormer; GFPGAN
|
'CodeFormer', #4 Restore Face: None; CodeFormer; GFPGAN
|
||||||
1, #5 Restore visibility value
|
1, #5 Restore visibility value
|
||||||
True, #7 Restore face -> Upscale
|
True, #7 Restore face -> Upscale
|
||||||
'4x_NMKD-Superscale-SP_178000_G', #8 Upscaler (type 'None' if doesn't need), see full list here: http://127.0.0.1:7860/sdapi/v1/script-info -> reactor -> sec.8
|
'4x_NMKD-Superscale-SP_178000_G', #8 Upscaler (type 'None' if doesn't need), see full list here: http://127.0.0.1:7860/sdapi/v1/script-info -> reactor -> sec.8
|
||||||
1.5, #9 Upscaler scale value
|
2, #9 Upscaler scale value
|
||||||
1, #10 Upscaler visibility (if scale = 1)
|
1, #10 Upscaler visibility (if scale = 1)
|
||||||
False, #11 Swap in source image
|
False, #11 Swap in source image
|
||||||
True, #12 Swap in generated image
|
True, #12 Swap in generated image
|
||||||
1, #13 Console Log Level (0 - min, 1 - med or 2 - max)
|
1, #13 Console Log Level (0 - min, 1 - med or 2 - max)
|
||||||
0, #14 Gender Detection (Source) (0 - No, 1 - Female Only, 2 - Male Only)
|
|
||||||
0, #15 Gender Detection (Target) (0 - No, 1 - Female Only, 2 - Male Only)
|
|
||||||
False, #16 Save the original image(s) made before swapping
|
|
||||||
0.8, #17 CodeFormer Weight (0 = maximum effect, 1 = minimum effect), 0.5 - by default
|
|
||||||
False, #18 Source Image Hash Check, True - by default
|
|
||||||
False, #19 Target Image Hash Check, False - by default
|
|
||||||
"CUDA", #20 CPU or CUDA (if you have it), CPU - by default
|
|
||||||
True, #21 Face Mask Correction
|
|
||||||
1, #22 Select Source, 0 - Image, 1 - Face Model, 2 - Source Folder
|
|
||||||
"elena.safetensors", #23 Filename of the face model (from "models/reactor/faces"), e.g. elena.safetensors, don't forger to set #22 to 1
|
|
||||||
"C:\PATH_TO_FACES_IMAGES", #24 The path to the folder containing source faces images, don't forger to set #22 to 2
|
|
||||||
None, #25 skip it for API
|
|
||||||
True, #26 Randomly select an image from the path
|
|
||||||
True, #27 Force Upscale even if no face found
|
|
||||||
0.6, #28 Face Detection Threshold
|
|
||||||
2, #29 Maximum number of faces to detect (0 is unlimited)
|
|
||||||
]
|
]
|
||||||
|
|
||||||
# The args for ReActor can be found by
|
# The args for ReActor can be found by
|
||||||
@ -84,7 +68,6 @@ finally:
|
|||||||
|
|
||||||
if result is not None:
|
if result is not None:
|
||||||
r = result.json()
|
r = result.json()
|
||||||
n = 0
|
|
||||||
|
|
||||||
for i in r['images']:
|
for i in r['images']:
|
||||||
image = Image.open(io.BytesIO(base64.b64decode(i.split(",",1)[0])))
|
image = Image.open(io.BytesIO(base64.b64decode(i.split(",",1)[0])))
|
||||||
@ -96,13 +79,11 @@ if result is not None:
|
|||||||
|
|
||||||
pnginfo = PngImagePlugin.PngInfo()
|
pnginfo = PngImagePlugin.PngInfo()
|
||||||
pnginfo.add_text("parameters", response2.json().get("info"))
|
pnginfo.add_text("parameters", response2.json().get("info"))
|
||||||
output_file = output+'_'+str(n)+'_.png'
|
|
||||||
try:
|
try:
|
||||||
image.save(output_file, pnginfo=pnginfo)
|
image.save(output_file, pnginfo=pnginfo)
|
||||||
except Exception as e:
|
except Exception as e:
|
||||||
print(e)
|
print(e)
|
||||||
finally:
|
finally:
|
||||||
print(f'{output_file} is saved\nAll is done!')
|
print(f'{output_file} is saved\nAll is done!')
|
||||||
n += 1
|
|
||||||
else:
|
else:
|
||||||
print('Something went wrong...')
|
print('Something went wrong...')
|
||||||
|
|||||||
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
BIN
example/demo_crop.jpg
Normal file
BIN
example/demo_crop.jpg
Normal file
Binary file not shown.
|
After Width: | Height: | Size: 298 KiB |
BIN
example/example.jpg
Normal file
BIN
example/example.jpg
Normal file
Binary file not shown.
|
After Width: | Height: | Size: 89 KiB |
BIN
example/insightface-0.7.3-cp310-cp310-win_amd64.whl
Normal file
BIN
example/insightface-0.7.3-cp310-cp310-win_amd64.whl
Normal file
Binary file not shown.
BIN
example/multiple-faces.png
Normal file
BIN
example/multiple-faces.png
Normal file
Binary file not shown.
|
After Width: | Height: | Size: 15 KiB |
BIN
example/pp-order.png
Normal file
BIN
example/pp-order.png
Normal file
Binary file not shown.
|
After Width: | Height: | Size: 31 KiB |
BIN
example/roop-off.png
Normal file
BIN
example/roop-off.png
Normal file
Binary file not shown.
|
After Width: | Height: | Size: 13 KiB |
106
install.py
106
install.py
@ -1,52 +1,35 @@
|
|||||||
import subprocess
|
import subprocess
|
||||||
import os, sys
|
import os, sys
|
||||||
from typing import Any
|
|
||||||
import pkg_resources
|
import pkg_resources
|
||||||
from tqdm import tqdm
|
from tqdm import tqdm
|
||||||
import urllib.request
|
import urllib.request
|
||||||
from packaging import version as pv
|
|
||||||
|
|
||||||
try:
|
req_file = os.path.join(os.path.dirname(os.path.realpath(__file__)), "requirements.txt")
|
||||||
from modules.paths_internal import models_path
|
|
||||||
except:
|
|
||||||
try:
|
|
||||||
from modules.paths import models_path
|
|
||||||
except:
|
|
||||||
models_path = os.path.abspath("models")
|
|
||||||
|
|
||||||
|
models_dir = os.path.abspath("models/roop")
|
||||||
|
|
||||||
BASE_PATH = os.path.dirname(os.path.realpath(__file__))
|
model_url = "https://huggingface.co/henryruhs/roop/resolve/main/inswapper_128.onnx"
|
||||||
|
|
||||||
req_file = os.path.join(BASE_PATH, "requirements.txt")
|
|
||||||
|
|
||||||
models_dir = os.path.join(models_path, "insightface")
|
|
||||||
|
|
||||||
model_url = "https://huggingface.co/datasets/Gourieff/ReActor/resolve/main/models/inswapper_128.onnx"
|
|
||||||
model_name = os.path.basename(model_url)
|
model_name = os.path.basename(model_url)
|
||||||
model_path = os.path.join(models_dir, model_name)
|
model_path = os.path.join(models_dir, model_name)
|
||||||
|
|
||||||
def pip_install(*args):
|
def run_pip(*args):
|
||||||
subprocess.run([sys.executable, "-m", "pip", "install", *args])
|
subprocess.run([sys.executable, "-m", "pip", "install", *args])
|
||||||
|
|
||||||
def pip_uninstall(*args):
|
|
||||||
subprocess.run([sys.executable, "-m", "pip", "uninstall", "-y", *args])
|
|
||||||
|
|
||||||
def is_installed (
|
def is_installed (
|
||||||
package: str, version: str | None = None, strict: bool = True
|
package: str, version: str | None = None
|
||||||
):
|
):
|
||||||
has_package = None
|
has_package = None
|
||||||
try:
|
try:
|
||||||
has_package = pkg_resources.get_distribution(package)
|
has_package = pkg_resources.get_distribution(package)
|
||||||
if has_package is not None:
|
if has_package is not None:
|
||||||
installed_version = has_package.version
|
installed_version = has_package.version
|
||||||
if (installed_version != version and strict == True) or (pv.parse(installed_version) < pv.parse(version) and strict == False):
|
if installed_version != version:
|
||||||
return False
|
return False
|
||||||
else:
|
else:
|
||||||
return True
|
return True
|
||||||
else:
|
else:
|
||||||
return False
|
return False
|
||||||
except Exception as e:
|
except:
|
||||||
print(f"Error: {e}")
|
|
||||||
return False
|
return False
|
||||||
|
|
||||||
def download(url, path):
|
def download(url, path):
|
||||||
@ -61,86 +44,23 @@ if not os.path.exists(models_dir):
|
|||||||
if not os.path.exists(model_path):
|
if not os.path.exists(model_path):
|
||||||
download(model_url, model_path)
|
download(model_url, model_path)
|
||||||
|
|
||||||
# print("ReActor preheating...", end=' ')
|
print("Checking ReActor (ex Roop-GE) requirements...", end=' ')
|
||||||
|
|
||||||
last_device = None
|
|
||||||
first_run = False
|
|
||||||
available_devices = ["CPU", "CUDA"]
|
|
||||||
|
|
||||||
try:
|
|
||||||
last_device_log = os.path.join(BASE_PATH, "last_device.txt")
|
|
||||||
with open(last_device_log) as f:
|
|
||||||
last_device = f.readline().strip()
|
|
||||||
if last_device not in available_devices:
|
|
||||||
last_device = None
|
|
||||||
except:
|
|
||||||
last_device = "CPU"
|
|
||||||
first_run = True
|
|
||||||
with open(os.path.join(BASE_PATH, "last_device.txt"), "w") as txt:
|
|
||||||
txt.write(last_device)
|
|
||||||
|
|
||||||
with open(req_file) as file:
|
with open(req_file) as file:
|
||||||
install_count = 0
|
install_count = 0
|
||||||
ort = "onnxruntime-gpu"
|
|
||||||
import torch
|
|
||||||
cuda_version = None
|
|
||||||
try:
|
|
||||||
if torch.cuda.is_available():
|
|
||||||
cuda_version = torch.version.cuda
|
|
||||||
print(f"CUDA {cuda_version}")
|
|
||||||
if first_run or last_device is None:
|
|
||||||
last_device = "CUDA"
|
|
||||||
elif torch.backends.mps.is_available() or hasattr(torch,'dml') or hasattr(torch,'privateuseone'):
|
|
||||||
ort = "onnxruntime"
|
|
||||||
# to prevent errors when ORT-GPU is installed but we want ORT instead:
|
|
||||||
if first_run:
|
|
||||||
pip_uninstall("onnxruntime", "onnxruntime-gpu")
|
|
||||||
# just in case:
|
|
||||||
if last_device == "CUDA" or last_device is None:
|
|
||||||
last_device = "CPU"
|
|
||||||
else:
|
|
||||||
if last_device == "CUDA" or last_device is None:
|
|
||||||
last_device = "CPU"
|
|
||||||
with open(os.path.join(BASE_PATH, "last_device.txt"), "w") as txt:
|
|
||||||
txt.write(last_device)
|
|
||||||
if cuda_version is not None:
|
|
||||||
if float(cuda_version)>=12: # CU12.x
|
|
||||||
extra_index_url = "https://aiinfra.pkgs.visualstudio.com/PublicPackages/_packaging/onnxruntime-cuda-12/pypi/simple/"
|
|
||||||
else: # CU11.8
|
|
||||||
extra_index_url = "https://aiinfra.pkgs.visualstudio.com/PublicPackages/_packaging/onnxruntime-cuda-11/pypi/simple"
|
|
||||||
if not is_installed(ort,"1.17.1",True):
|
|
||||||
install_count += 1
|
|
||||||
ort = "onnxruntime-gpu==1.17.1"
|
|
||||||
pip_uninstall("onnxruntime", "onnxruntime-gpu")
|
|
||||||
pip_install(ort,"--extra-index-url",extra_index_url)
|
|
||||||
elif not is_installed(ort,"1.18.1",False):
|
|
||||||
install_count += 1
|
|
||||||
pip_install(ort, "-U")
|
|
||||||
except Exception as e:
|
|
||||||
print(e)
|
|
||||||
print(f"\nERROR: Failed to install {ort} - ReActor won't start")
|
|
||||||
raise e
|
|
||||||
# print(f"Device: {last_device}")
|
|
||||||
strict = True
|
|
||||||
for package in file:
|
for package in file:
|
||||||
package_version = None
|
package_version = None
|
||||||
try:
|
try:
|
||||||
package = package.strip()
|
package = package.strip()
|
||||||
if "==" in package:
|
if "==" in package:
|
||||||
package_version = package.split('==')[1]
|
package_version = package.split('==')[1]
|
||||||
elif ">=" in package:
|
if not is_installed(package,package_version):
|
||||||
package_version = package.split('>=')[1]
|
|
||||||
strict = False
|
|
||||||
if not is_installed(package,package_version,strict):
|
|
||||||
install_count += 1
|
install_count += 1
|
||||||
pip_install(package)
|
run_pip(package)
|
||||||
except Exception as e:
|
except Exception as e:
|
||||||
print(e)
|
print(e)
|
||||||
print(f"\nERROR: Failed to install {package} - ReActor won't start")
|
print(f"\nERROR: Failed to install {package} - ReActor won't start")
|
||||||
raise e
|
raise e
|
||||||
if install_count > 0:
|
if install_count > 0:
|
||||||
print(f"""
|
print(f'\n--- PLEASE, RESTART the Server! ---\n')
|
||||||
+---------------------------------+
|
else:
|
||||||
--- PLEASE, RESTART the Server! ---
|
print('Ok')
|
||||||
+---------------------------------+
|
|
||||||
""")
|
|
||||||
|
|||||||
@ -1,176 +0,0 @@
|
|||||||
import cv2
|
|
||||||
import numpy as np
|
|
||||||
from PIL import Image, ImageDraw
|
|
||||||
|
|
||||||
from torchvision.transforms.functional import to_pil_image
|
|
||||||
|
|
||||||
from scripts.reactor_logger import logger
|
|
||||||
from scripts.reactor_inferencers.bisenet_mask_generator import BiSeNetMaskGenerator
|
|
||||||
from scripts.reactor_entities.face import FaceArea
|
|
||||||
from scripts.reactor_entities.rect import Rect
|
|
||||||
|
|
||||||
|
|
||||||
colors = [
|
|
||||||
(255, 0, 0),
|
|
||||||
(0, 255, 0),
|
|
||||||
(0, 0, 255),
|
|
||||||
(255, 255, 0),
|
|
||||||
(255, 0, 255),
|
|
||||||
(0, 255, 255),
|
|
||||||
(255, 255, 255),
|
|
||||||
(128, 0, 0),
|
|
||||||
(0, 128, 0),
|
|
||||||
(128, 128, 0),
|
|
||||||
(0, 0, 128),
|
|
||||||
(0, 128, 128),
|
|
||||||
]
|
|
||||||
|
|
||||||
def color_generator(colors):
|
|
||||||
while True:
|
|
||||||
for color in colors:
|
|
||||||
yield color
|
|
||||||
|
|
||||||
|
|
||||||
def process_face_image(
|
|
||||||
face: FaceArea,
|
|
||||||
**kwargs,
|
|
||||||
) -> Image:
|
|
||||||
image = np.array(face.image)
|
|
||||||
overlay = image.copy()
|
|
||||||
color_iter = color_generator(colors)
|
|
||||||
cv2.rectangle(overlay, (0, 0), (image.shape[1], image.shape[0]), next(color_iter), -1)
|
|
||||||
l, t, r, b = face.face_area_on_image
|
|
||||||
cv2.rectangle(overlay, (l, t), (r, b), (0, 0, 0), 10)
|
|
||||||
if face.landmarks_on_image is not None:
|
|
||||||
for landmark in face.landmarks_on_image:
|
|
||||||
cv2.circle(overlay, (int(landmark.x), int(landmark.y)), 6, (0, 0, 0), 10)
|
|
||||||
alpha = 0.3
|
|
||||||
output = cv2.addWeighted(image, 1 - alpha, overlay, alpha, 0)
|
|
||||||
|
|
||||||
return Image.fromarray(output)
|
|
||||||
|
|
||||||
|
|
||||||
def apply_face_mask(swapped_image:np.ndarray,target_image:np.ndarray,target_face,entire_mask_image:np.array)->np.ndarray:
|
|
||||||
logger.status("Correcting Face Mask")
|
|
||||||
mask_generator = BiSeNetMaskGenerator()
|
|
||||||
face = FaceArea(target_image,Rect.from_ndarray(np.array(target_face.bbox)),1.6,512,"")
|
|
||||||
face_image = np.array(face.image)
|
|
||||||
process_face_image(face)
|
|
||||||
face_area_on_image = face.face_area_on_image
|
|
||||||
mask = mask_generator.generate_mask(
|
|
||||||
face_image,
|
|
||||||
face_area_on_image=face_area_on_image,
|
|
||||||
affected_areas=["Face"],
|
|
||||||
mask_size=0,
|
|
||||||
use_minimal_area=True
|
|
||||||
)
|
|
||||||
mask = cv2.blur(mask, (12, 12))
|
|
||||||
# """entire_mask_image = np.zeros_like(target_image)"""
|
|
||||||
larger_mask = cv2.resize(mask, dsize=(face.width, face.height))
|
|
||||||
entire_mask_image[
|
|
||||||
face.top : face.bottom,
|
|
||||||
face.left : face.right,
|
|
||||||
] = larger_mask
|
|
||||||
|
|
||||||
result = Image.composite(Image.fromarray(swapped_image),Image.fromarray(target_image), Image.fromarray(entire_mask_image).convert("L"))
|
|
||||||
return np.array(result)
|
|
||||||
|
|
||||||
|
|
||||||
def rotate_array(image: np.ndarray, angle: float) -> np.ndarray:
|
|
||||||
if angle == 0:
|
|
||||||
return image
|
|
||||||
|
|
||||||
h, w = image.shape[:2]
|
|
||||||
center = (w // 2, h // 2)
|
|
||||||
|
|
||||||
M = cv2.getRotationMatrix2D(center, angle, 1.0)
|
|
||||||
return cv2.warpAffine(image, M, (w, h))
|
|
||||||
|
|
||||||
|
|
||||||
def rotate_image(image: Image, angle: float) -> Image:
|
|
||||||
if angle == 0:
|
|
||||||
return image
|
|
||||||
return Image.fromarray(rotate_array(np.array(image), angle))
|
|
||||||
|
|
||||||
|
|
||||||
def correct_face_tilt(angle: float) -> bool:
|
|
||||||
angle = abs(angle)
|
|
||||||
if angle > 180:
|
|
||||||
angle = 360 - angle
|
|
||||||
return angle > 40
|
|
||||||
|
|
||||||
|
|
||||||
def _dilate(arr: np.ndarray, value: int) -> np.ndarray:
|
|
||||||
kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (value, value))
|
|
||||||
return cv2.dilate(arr, kernel, iterations=1)
|
|
||||||
|
|
||||||
|
|
||||||
def _erode(arr: np.ndarray, value: int) -> np.ndarray:
|
|
||||||
kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (value, value))
|
|
||||||
return cv2.erode(arr, kernel, iterations=1)
|
|
||||||
|
|
||||||
|
|
||||||
def dilate_erode(img: Image.Image, value: int) -> Image.Image:
|
|
||||||
"""
|
|
||||||
The dilate_erode function takes an image and a value.
|
|
||||||
If the value is positive, it dilates the image by that amount.
|
|
||||||
If the value is negative, it erodes the image by that amount.
|
|
||||||
|
|
||||||
Parameters
|
|
||||||
----------
|
|
||||||
img: PIL.Image.Image
|
|
||||||
the image to be processed
|
|
||||||
value: int
|
|
||||||
kernel size of dilation or erosion
|
|
||||||
|
|
||||||
Returns
|
|
||||||
-------
|
|
||||||
PIL.Image.Image
|
|
||||||
The image that has been dilated or eroded
|
|
||||||
"""
|
|
||||||
if value == 0:
|
|
||||||
return img
|
|
||||||
|
|
||||||
arr = np.array(img)
|
|
||||||
arr = _dilate(arr, value) if value > 0 else _erode(arr, -value)
|
|
||||||
|
|
||||||
return Image.fromarray(arr)
|
|
||||||
|
|
||||||
def mask_to_pil(masks, shape: tuple[int, int]) -> list[Image.Image]:
|
|
||||||
"""
|
|
||||||
Parameters
|
|
||||||
----------
|
|
||||||
masks: torch.Tensor, dtype=torch.float32, shape=(N, H, W).
|
|
||||||
The device can be CUDA, but `to_pil_image` takes care of that.
|
|
||||||
|
|
||||||
shape: tuple[int, int]
|
|
||||||
(width, height) of the original image
|
|
||||||
"""
|
|
||||||
n = masks.shape[0]
|
|
||||||
return [to_pil_image(masks[i], mode="L").resize(shape) for i in range(n)]
|
|
||||||
|
|
||||||
def create_mask_from_bbox(
|
|
||||||
bboxes: list[list[float]], shape: tuple[int, int]
|
|
||||||
) -> list[Image.Image]:
|
|
||||||
"""
|
|
||||||
Parameters
|
|
||||||
----------
|
|
||||||
bboxes: list[list[float]]
|
|
||||||
list of [x1, y1, x2, y2]
|
|
||||||
bounding boxes
|
|
||||||
shape: tuple[int, int]
|
|
||||||
shape of the image (width, height)
|
|
||||||
|
|
||||||
Returns
|
|
||||||
-------
|
|
||||||
masks: list[Image.Image]
|
|
||||||
A list of masks
|
|
||||||
|
|
||||||
"""
|
|
||||||
masks = []
|
|
||||||
for bbox in bboxes:
|
|
||||||
mask = Image.new("L", shape, 0)
|
|
||||||
mask_draw = ImageDraw.Draw(mask)
|
|
||||||
mask_draw.rectangle(bbox, fill=255)
|
|
||||||
masks.append(mask)
|
|
||||||
return masks
|
|
||||||
@ -1,5 +0,0 @@
|
|||||||
import reactor_ui.reactor_upscale_ui as ui_upscale
|
|
||||||
import reactor_ui.reactor_tools_ui as ui_tools
|
|
||||||
import reactor_ui.reactor_settings_ui as ui_settings
|
|
||||||
import reactor_ui.reactor_main_ui as ui_main
|
|
||||||
import reactor_ui.reactor_detection_ui as ui_detection
|
|
||||||
@ -1,54 +0,0 @@
|
|||||||
import gradio as gr
|
|
||||||
from scripts.reactor_swapper import (
|
|
||||||
clear_faces,
|
|
||||||
clear_faces_list,
|
|
||||||
clear_faces_target,
|
|
||||||
clear_faces_all
|
|
||||||
)
|
|
||||||
|
|
||||||
# TAB DETECTION
|
|
||||||
def show(show_br: bool = True):
|
|
||||||
with gr.Tab("Detection"):
|
|
||||||
with gr.Row():
|
|
||||||
det_thresh = gr.Slider(
|
|
||||||
minimum=0.1,
|
|
||||||
maximum=1.0,
|
|
||||||
value=0.5,
|
|
||||||
step=0.01,
|
|
||||||
label="Threshold",
|
|
||||||
info="The higher the value, the more sensitive the detection is to what is considered a face (0.5 by default)",
|
|
||||||
scale=2
|
|
||||||
)
|
|
||||||
det_maxnum = gr.Slider(
|
|
||||||
minimum=0,
|
|
||||||
maximum=20,
|
|
||||||
value=0,
|
|
||||||
step=1,
|
|
||||||
label="Max Faces",
|
|
||||||
info="Maximum number of faces to detect (0 is unlimited)",
|
|
||||||
scale=1
|
|
||||||
)
|
|
||||||
# gr.Markdown("<br>", visible=show_br)
|
|
||||||
gr.Markdown("Hashed images get processed with previously set detection parameters (the face is hashed with all available parameters to bypass the analyzer and speed up the process). Please clear the hash if you want to apply new detection settings.", visible=show_br)
|
|
||||||
with gr.Row():
|
|
||||||
imgs_hash_clear_single = gr.Button(
|
|
||||||
value="Clear Source Images Hash (Single)",
|
|
||||||
scale=1
|
|
||||||
)
|
|
||||||
imgs_hash_clear_multiple = gr.Button(
|
|
||||||
value="Clear Source Images Hash (Multiple)",
|
|
||||||
scale=1
|
|
||||||
)
|
|
||||||
imgs_hash_clear_target = gr.Button(
|
|
||||||
value="Clear Target Image Hash",
|
|
||||||
scale=1
|
|
||||||
)
|
|
||||||
imgs_hash_clear_all = gr.Button(
|
|
||||||
value="Clear All Hash"
|
|
||||||
)
|
|
||||||
progressbar_area = gr.Markdown("")
|
|
||||||
imgs_hash_clear_single.click(clear_faces,None,[progressbar_area])
|
|
||||||
imgs_hash_clear_multiple.click(clear_faces_list,None,[progressbar_area])
|
|
||||||
imgs_hash_clear_target.click(clear_faces_target,None,[progressbar_area])
|
|
||||||
imgs_hash_clear_all.click(clear_faces_all,None,[progressbar_area])
|
|
||||||
return det_thresh, det_maxnum
|
|
||||||
@ -1,229 +0,0 @@
|
|||||||
import gradio as gr
|
|
||||||
from scripts.reactor_helpers import (
|
|
||||||
get_model_names,
|
|
||||||
get_facemodels
|
|
||||||
)
|
|
||||||
from scripts.reactor_swapper import (
|
|
||||||
clear_faces_list,
|
|
||||||
)
|
|
||||||
from modules import shared
|
|
||||||
|
|
||||||
# SAVE_ORIGINAL: bool = False
|
|
||||||
|
|
||||||
def update_fm_list(selected: str):
|
|
||||||
try: # GR3.x
|
|
||||||
return gr.Dropdown.update(
|
|
||||||
value=selected, choices=get_model_names(get_facemodels)
|
|
||||||
)
|
|
||||||
except: # GR4.x
|
|
||||||
return gr.Dropdown(
|
|
||||||
value=selected, choices=get_model_names(get_facemodels)
|
|
||||||
)
|
|
||||||
|
|
||||||
# TAB MAIN
|
|
||||||
def show(is_img2img: bool, show_br: bool = True, **msgs):
|
|
||||||
|
|
||||||
# def on_select_source(selected: bool, evt: gr.SelectData):
|
|
||||||
def on_select_source(evt: gr.SelectData):
|
|
||||||
# global SAVE_ORIGINAL
|
|
||||||
if evt.index == 2:
|
|
||||||
# if SAVE_ORIGINAL != selected:
|
|
||||||
# SAVE_ORIGINAL = selected
|
|
||||||
try: # GR3.x
|
|
||||||
return {
|
|
||||||
control_col_1: gr.Column.update(visible=False),
|
|
||||||
control_col_2: gr.Column.update(visible=False),
|
|
||||||
control_col_3: gr.Column.update(visible=True),
|
|
||||||
# save_original: gr.Checkbox.update(value=False,visible=False),
|
|
||||||
imgs_hash_clear: gr.Button.update(visible=True)
|
|
||||||
}
|
|
||||||
except: # GR4.x
|
|
||||||
return {
|
|
||||||
control_col_1: gr.Column(visible=False),
|
|
||||||
control_col_2: gr.Column(visible=False),
|
|
||||||
control_col_3: gr.Column(visible=True),
|
|
||||||
# save_original: gr.Checkbox.update(value=False,visible=False),
|
|
||||||
imgs_hash_clear: gr.Button(visible=True)
|
|
||||||
}
|
|
||||||
if evt.index == 0:
|
|
||||||
try: # GR3.x
|
|
||||||
return {
|
|
||||||
control_col_1: gr.Column.update(visible=True),
|
|
||||||
control_col_2: gr.Column.update(visible=False),
|
|
||||||
control_col_3: gr.Column.update(visible=False),
|
|
||||||
# save_original: gr.Checkbox.update(value=SAVE_ORIGINAL,visible=show_br),
|
|
||||||
imgs_hash_clear: gr.Button.update(visible=False)
|
|
||||||
}
|
|
||||||
except: # GR4.x
|
|
||||||
return {
|
|
||||||
control_col_1: gr.Column(visible=True),
|
|
||||||
control_col_2: gr.Column(visible=False),
|
|
||||||
control_col_3: gr.Column(visible=False),
|
|
||||||
# save_original: gr.Checkbox.update(value=SAVE_ORIGINAL,visible=show_br),
|
|
||||||
imgs_hash_clear: gr.Button(visible=False)
|
|
||||||
}
|
|
||||||
if evt.index == 1:
|
|
||||||
try: # GR3.x
|
|
||||||
return {
|
|
||||||
control_col_1: gr.Column.update(visible=False),
|
|
||||||
control_col_2: gr.Column.update(visible=True),
|
|
||||||
control_col_3: gr.Column.update(visible=False),
|
|
||||||
# save_original: gr.Checkbox.update(value=SAVE_ORIGINAL,visible=show_br),
|
|
||||||
imgs_hash_clear: gr.Button.update(visible=False)
|
|
||||||
}
|
|
||||||
except: # GR4.x
|
|
||||||
return {
|
|
||||||
control_col_1: gr.Column(visible=False),
|
|
||||||
control_col_2: gr.Column(visible=True),
|
|
||||||
control_col_3: gr.Column(visible=False),
|
|
||||||
# save_original: gr.Checkbox.update(value=SAVE_ORIGINAL,visible=show_br),
|
|
||||||
imgs_hash_clear: gr.Button(visible=False)
|
|
||||||
}
|
|
||||||
|
|
||||||
progressbar_area = gr.Markdown("")
|
|
||||||
with gr.Tab("Main"):
|
|
||||||
with gr.Column():
|
|
||||||
with gr.Row():
|
|
||||||
select_source = gr.Radio(
|
|
||||||
["Image(s)","Face Model","Folder"],
|
|
||||||
value="Image(s)",
|
|
||||||
label="Select Source",
|
|
||||||
type="index",
|
|
||||||
scale=1,
|
|
||||||
)
|
|
||||||
with gr.Column(visible=False) as control_col_2:
|
|
||||||
with gr.Row():
|
|
||||||
face_models = get_model_names(get_facemodels)
|
|
||||||
face_model = gr.Dropdown(
|
|
||||||
choices=face_models,
|
|
||||||
label="Choose Face Model",
|
|
||||||
value="None",
|
|
||||||
scale=1,
|
|
||||||
)
|
|
||||||
fm_update = gr.Button(
|
|
||||||
value="🔄",
|
|
||||||
variant="tool",
|
|
||||||
)
|
|
||||||
fm_update.click(
|
|
||||||
update_fm_list,
|
|
||||||
inputs=[face_model],
|
|
||||||
outputs=[face_model],
|
|
||||||
)
|
|
||||||
imgs_hash_clear = gr.Button(
|
|
||||||
value="Clear Source Images Hash",
|
|
||||||
scale=1,
|
|
||||||
visible=False,
|
|
||||||
)
|
|
||||||
imgs_hash_clear.click(clear_faces_list,None,[progressbar_area])
|
|
||||||
gr.Markdown("<br>", visible=show_br)
|
|
||||||
with gr.Column(visible=True) as control_col_1:
|
|
||||||
with gr.Row():
|
|
||||||
selected_tab = gr.Textbox('tab_single', visible=False)
|
|
||||||
with gr.Tabs() as tab_single:
|
|
||||||
with gr.Tab('Single'):
|
|
||||||
img = gr.Image(
|
|
||||||
type="pil",
|
|
||||||
label="Single Source Image",
|
|
||||||
)
|
|
||||||
with gr.Tab('Multiple') as tab_multiple:
|
|
||||||
imgs = gr.Files(
|
|
||||||
label=f"Multiple Source Images{msgs['extra_multiple_source']}",
|
|
||||||
file_types=["image"],
|
|
||||||
)
|
|
||||||
tab_single.select(fn=lambda: 'tab_single', inputs=[], outputs=[selected_tab])
|
|
||||||
tab_multiple.select(fn=lambda: 'tab_multiple', inputs=[], outputs=[selected_tab])
|
|
||||||
with gr.Column(visible=False) as control_col_3:
|
|
||||||
gr.Markdown("<span style='display:block;text-align:right;padding-right:3px;margin: -15px 0;font-size:1.1em'><sup>Clear Hash if you see the previous face was swapped instead of the new one</sup></span>")
|
|
||||||
with gr.Row():
|
|
||||||
source_folder = gr.Textbox(
|
|
||||||
value="",
|
|
||||||
placeholder="Paste here the path to the folder containing source faces images",
|
|
||||||
label=f"Source Folder{msgs['extra_multiple_source']}",
|
|
||||||
scale=2,
|
|
||||||
)
|
|
||||||
random_image = gr.Checkbox(
|
|
||||||
False,
|
|
||||||
label="Random Image",
|
|
||||||
info="Randomly select an image from the path",
|
|
||||||
scale=1,
|
|
||||||
)
|
|
||||||
setattr(face_model, "do_not_save_to_config", True)
|
|
||||||
if is_img2img:
|
|
||||||
save_original = gr.Checkbox(
|
|
||||||
False,
|
|
||||||
label="Save Original (Swap in generated only)",
|
|
||||||
info="Save the original image(s) made before swapping"
|
|
||||||
)
|
|
||||||
else:
|
|
||||||
save_original = gr.Checkbox(
|
|
||||||
False,
|
|
||||||
label="Save Original",
|
|
||||||
info="Save the original image(s) made before swapping",
|
|
||||||
visible=show_br
|
|
||||||
)
|
|
||||||
# imgs.upload(on_files_upload_uncheck_so,[save_original],[save_original],show_progress=False)
|
|
||||||
# imgs.clear(on_files_clear,None,[save_original],show_progress=False)
|
|
||||||
imgs.clear(clear_faces_list,None,None,show_progress=False)
|
|
||||||
mask_face = gr.Checkbox(
|
|
||||||
False,
|
|
||||||
label="Face Mask Correction",
|
|
||||||
info="Apply this option if you see some pixelation around face contours"
|
|
||||||
)
|
|
||||||
gr.Markdown("<br>", visible=show_br)
|
|
||||||
gr.Markdown("Source Image (above):")
|
|
||||||
with gr.Row():
|
|
||||||
source_faces_index = gr.Textbox(
|
|
||||||
value="0",
|
|
||||||
placeholder="Which face(s) to use as Source (comma separated)",
|
|
||||||
label="Comma separated face number(s); Example: 0,2,1",
|
|
||||||
)
|
|
||||||
gender_source = gr.Radio(
|
|
||||||
["No", "Female Only", "Male Only"],
|
|
||||||
value="No",
|
|
||||||
label="Gender Detection (Source)",
|
|
||||||
type="index",
|
|
||||||
)
|
|
||||||
gr.Markdown("<br>", visible=show_br)
|
|
||||||
gr.Markdown("Target Image (result):")
|
|
||||||
with gr.Row():
|
|
||||||
faces_index = gr.Textbox(
|
|
||||||
value="0",
|
|
||||||
placeholder="Which face(s) to Swap into Target (comma separated)",
|
|
||||||
label="Comma separated face number(s); Example: 1,0,2",
|
|
||||||
)
|
|
||||||
gender_target = gr.Radio(
|
|
||||||
["No", "Female Only", "Male Only"],
|
|
||||||
value="No",
|
|
||||||
label="Gender Detection (Target)",
|
|
||||||
type="index",
|
|
||||||
)
|
|
||||||
gr.Markdown("<br>", visible=show_br)
|
|
||||||
with gr.Row():
|
|
||||||
face_restorer_name = gr.Radio(
|
|
||||||
label="Restore Face",
|
|
||||||
choices=["None"] + [x.name() for x in shared.face_restorers],
|
|
||||||
value=shared.face_restorers[0].name(),
|
|
||||||
type="value",
|
|
||||||
)
|
|
||||||
with gr.Column():
|
|
||||||
face_restorer_visibility = gr.Slider(
|
|
||||||
0, 1, 1, step=0.1, label="Restore Face Visibility"
|
|
||||||
)
|
|
||||||
codeformer_weight = gr.Slider(
|
|
||||||
0, 1, 0.5, step=0.1, label="CodeFormer Weight (Fidelity)", info="0 = far from original (max restoration), 1 = close to original (min restoration)"
|
|
||||||
)
|
|
||||||
gr.Markdown("<br>", visible=show_br)
|
|
||||||
swap_in_source = gr.Checkbox(
|
|
||||||
False,
|
|
||||||
label="Swap in source image",
|
|
||||||
visible=is_img2img,
|
|
||||||
)
|
|
||||||
swap_in_generated = gr.Checkbox(
|
|
||||||
True,
|
|
||||||
label="Swap in generated image",
|
|
||||||
visible=is_img2img,
|
|
||||||
)
|
|
||||||
# select_source.select(on_select_source,[save_original],[control_col_1,control_col_2,control_col_3,save_original,imgs_hash_clear],show_progress=False)
|
|
||||||
select_source.select(on_select_source,None,[control_col_1,control_col_2,control_col_3,imgs_hash_clear],show_progress=False)
|
|
||||||
|
|
||||||
return img, imgs, selected_tab, select_source, face_model, source_folder, save_original, mask_face, source_faces_index, gender_source, faces_index, gender_target, face_restorer_name, face_restorer_visibility, codeformer_weight, swap_in_source, swap_in_generated, random_image
|
|
||||||
@ -1,77 +0,0 @@
|
|||||||
import gradio as gr
|
|
||||||
from scripts.reactor_logger import logger
|
|
||||||
from scripts.reactor_helpers import get_models, set_Device
|
|
||||||
from scripts.reactor_globals import DEVICE, DEVICE_LIST
|
|
||||||
try:
|
|
||||||
import torch.cuda as cuda
|
|
||||||
EP_is_visible = True if cuda.is_available() else False
|
|
||||||
except:
|
|
||||||
EP_is_visible = False
|
|
||||||
|
|
||||||
def update_models_list(selected: str):
|
|
||||||
return gr.Dropdown.update(
|
|
||||||
value=selected, choices=get_models()
|
|
||||||
)
|
|
||||||
|
|
||||||
def show(hash_check_block: bool = True):
|
|
||||||
# TAB SETTINGS
|
|
||||||
with gr.Tab("Settings"):
|
|
||||||
models = get_models()
|
|
||||||
with gr.Row(visible=EP_is_visible):
|
|
||||||
device = gr.Radio(
|
|
||||||
label="Execution Provider",
|
|
||||||
choices=DEVICE_LIST,
|
|
||||||
value=DEVICE,
|
|
||||||
type="value",
|
|
||||||
info="Click 'Save' to apply. If you already run 'Generate' - RESTART is required: (A1111) Extensions Tab -> 'Apply and restart UI' or (SD.Next) close the Server and start it again",
|
|
||||||
scale=2,
|
|
||||||
)
|
|
||||||
save_device_btn = gr.Button("Save", scale=0)
|
|
||||||
save = gr.Markdown("", visible=EP_is_visible)
|
|
||||||
setattr(device, "do_not_save_to_config", True)
|
|
||||||
save_device_btn.click(
|
|
||||||
set_Device,
|
|
||||||
inputs=[device],
|
|
||||||
outputs=[save],
|
|
||||||
)
|
|
||||||
with gr.Row():
|
|
||||||
if len(models) == 0:
|
|
||||||
logger.warning(
|
|
||||||
"You should at least have one model in models directory, please read the doc here: https://github.com/Gourieff/sd-webui-reactor/"
|
|
||||||
)
|
|
||||||
model = gr.Dropdown(
|
|
||||||
choices=models,
|
|
||||||
label="Model not found, please download one and refresh the list"
|
|
||||||
)
|
|
||||||
else:
|
|
||||||
model = gr.Dropdown(
|
|
||||||
choices=models, label="Model", value=models[0]
|
|
||||||
)
|
|
||||||
models_update = gr.Button(
|
|
||||||
value="🔄",
|
|
||||||
variant="tool",
|
|
||||||
)
|
|
||||||
models_update.click(
|
|
||||||
update_models_list,
|
|
||||||
inputs=[model],
|
|
||||||
outputs=[model],
|
|
||||||
)
|
|
||||||
console_logging_level = gr.Radio(
|
|
||||||
["No log", "Minimum", "Default"],
|
|
||||||
value="Minimum",
|
|
||||||
label="Console Log Level",
|
|
||||||
type="index"
|
|
||||||
)
|
|
||||||
gr.Markdown("<br>", visible=hash_check_block)
|
|
||||||
with gr.Row(visible=hash_check_block):
|
|
||||||
source_hash_check = gr.Checkbox(
|
|
||||||
True,
|
|
||||||
label="Source Image Hash Check",
|
|
||||||
info="Recommended to keep it ON. Processing is faster when Source Image is the same."
|
|
||||||
)
|
|
||||||
target_hash_check = gr.Checkbox(
|
|
||||||
False,
|
|
||||||
label="Target Image Hash Check",
|
|
||||||
info="Affects if you use Extras tab or img2img with only 'Swap in source image' on."
|
|
||||||
)
|
|
||||||
return model, device, console_logging_level, source_hash_check, target_hash_check
|
|
||||||
@ -1,61 +0,0 @@
|
|||||||
import gradio as gr
|
|
||||||
from scripts.reactor_swapper import build_face_model, blend_faces
|
|
||||||
|
|
||||||
# TAB TOOLS
|
|
||||||
def show():
|
|
||||||
with gr.Tab("Tools"):
|
|
||||||
with gr.Tab("Face Models"):
|
|
||||||
|
|
||||||
with gr.Tab("Single"):
|
|
||||||
gr.Markdown("Load an image containing one person, name it and click 'Build and Save'")
|
|
||||||
img_fm = gr.Image(
|
|
||||||
type="pil",
|
|
||||||
label="Load an Image to build -Face Model-",
|
|
||||||
)
|
|
||||||
with gr.Row(equal_height=True):
|
|
||||||
fm_name = gr.Textbox(
|
|
||||||
value="",
|
|
||||||
placeholder="Please type any name (e.g. Elena)",
|
|
||||||
label="Face Model Name",
|
|
||||||
)
|
|
||||||
save_fm_btn = gr.Button("Build and Save")
|
|
||||||
save_fm = gr.Markdown("You can find saved models in 'models/reactor/faces'")
|
|
||||||
save_fm_btn.click(
|
|
||||||
build_face_model,
|
|
||||||
inputs=[img_fm, fm_name],
|
|
||||||
outputs=[save_fm],
|
|
||||||
)
|
|
||||||
|
|
||||||
with gr.Tab("Blend"):
|
|
||||||
gr.Markdown("Load a set of images containing any person, name it and click 'Build and Save'")
|
|
||||||
with gr.Row():
|
|
||||||
imgs_fm = gr.Files(
|
|
||||||
label=f"Load Images to build -Blended Face Model-",
|
|
||||||
file_types=["image"]
|
|
||||||
)
|
|
||||||
with gr.Column():
|
|
||||||
compute_method = gr.Radio(
|
|
||||||
["Mean", "Median", "Mode"],
|
|
||||||
value="Mean",
|
|
||||||
label="Compute Method",
|
|
||||||
type="index",
|
|
||||||
info="Mean (recommended) - Average value (best result 👍); Median* - Mid-point value (may be funny 😅); Mode - Most common value (may be scary 😨); *Mean and Median will be similar if you load two images"
|
|
||||||
)
|
|
||||||
shape_check = gr.Checkbox(
|
|
||||||
False,
|
|
||||||
label="Check -Embedding Shape- on Similarity",
|
|
||||||
info="(Experimental) Turn it ON if you want to skip the faces which are too much different from the first one in the list to prevent some probable 'shape mismatches'"
|
|
||||||
)
|
|
||||||
with gr.Row(equal_height=True):
|
|
||||||
fm_name = gr.Textbox(
|
|
||||||
value="",
|
|
||||||
placeholder="Please type any name (e.g. Elena)",
|
|
||||||
label="Face Model Name",
|
|
||||||
)
|
|
||||||
save_fm_btn = gr.Button("Build and Save")
|
|
||||||
save_fm = gr.Markdown("You can find saved models in 'models/reactor/faces'")
|
|
||||||
save_fm_btn.click(
|
|
||||||
blend_faces,
|
|
||||||
inputs=[imgs_fm, fm_name, compute_method, shape_check],
|
|
||||||
outputs=[save_fm],
|
|
||||||
)
|
|
||||||
@ -1,47 +0,0 @@
|
|||||||
import gradio as gr
|
|
||||||
from modules import shared
|
|
||||||
|
|
||||||
def update_upscalers_list(selected: str):
|
|
||||||
return gr.Dropdown.update(
|
|
||||||
value=selected, choices=[upscaler.name for upscaler in shared.sd_upscalers]
|
|
||||||
)
|
|
||||||
|
|
||||||
# TAB UPSCALE
|
|
||||||
def show(show_br: bool = True):
|
|
||||||
with gr.Tab("Upscale"):
|
|
||||||
with gr.Row():
|
|
||||||
restore_first = gr.Checkbox(
|
|
||||||
True,
|
|
||||||
label="1. Restore Face -> 2. Upscale (-Uncheck- if you want vice versa)",
|
|
||||||
info="Postprocessing Order",
|
|
||||||
scale=2
|
|
||||||
)
|
|
||||||
upscale_force = gr.Checkbox(
|
|
||||||
False,
|
|
||||||
label="Force Upscale",
|
|
||||||
info="Upscale anyway - even if no face found",
|
|
||||||
scale=1
|
|
||||||
)
|
|
||||||
with gr.Row():
|
|
||||||
upscaler_name = gr.Dropdown(
|
|
||||||
choices=[upscaler.name for upscaler in shared.sd_upscalers],
|
|
||||||
label="Upscaler",
|
|
||||||
value="None",
|
|
||||||
info="Won't scale if you choose -Swap in Source- via img2img, only 1x-postprocessing will affect (texturing, denoising, restyling etc.)"
|
|
||||||
)
|
|
||||||
upscalers_update = gr.Button(
|
|
||||||
value="🔄",
|
|
||||||
variant="tool",
|
|
||||||
)
|
|
||||||
upscalers_update.click(
|
|
||||||
update_upscalers_list,
|
|
||||||
inputs=[upscaler_name],
|
|
||||||
outputs=[upscaler_name],
|
|
||||||
)
|
|
||||||
gr.Markdown("<br>", visible=show_br)
|
|
||||||
with gr.Row():
|
|
||||||
upscaler_scale = gr.Slider(1, 8, 1, step=0.1, label="Scale by")
|
|
||||||
upscaler_visibility = gr.Slider(
|
|
||||||
0, 1, 1, step=0.1, label="Upscaler Visibility (if scale = 1)"
|
|
||||||
)
|
|
||||||
return restore_first, upscaler_name, upscaler_scale, upscaler_visibility, upscale_force
|
|
||||||
@ -1,4 +1,4 @@
|
|||||||
albumentations==1.4.3
|
|
||||||
insightface==0.7.3
|
insightface==0.7.3
|
||||||
onnx==1.16.1
|
onnx==1.14.0
|
||||||
opencv-python>=4.7.0.72
|
onnxruntime==1.15.0
|
||||||
|
opencv-python==4.7.0.72
|
||||||
|
|||||||
@ -2,7 +2,7 @@ import os.path as osp
|
|||||||
import glob
|
import glob
|
||||||
import logging
|
import logging
|
||||||
import insightface
|
import insightface
|
||||||
from insightface.model_zoo.model_zoo import ModelRouter, PickableInferenceSession, get_default_providers
|
from insightface.model_zoo.model_zoo import ModelRouter, PickableInferenceSession
|
||||||
from insightface.model_zoo.retinaface import RetinaFace
|
from insightface.model_zoo.retinaface import RetinaFace
|
||||||
from insightface.model_zoo.landmark import Landmark
|
from insightface.model_zoo.landmark import Landmark
|
||||||
from insightface.model_zoo.attribute import Attribute
|
from insightface.model_zoo.attribute import Attribute
|
||||||
@ -14,7 +14,7 @@ from insightface.model_zoo import model_zoo
|
|||||||
import onnxruntime
|
import onnxruntime
|
||||||
import onnx
|
import onnx
|
||||||
from onnx import numpy_helper
|
from onnx import numpy_helper
|
||||||
from scripts.reactor_logger import logger
|
from scripts.logger import logger
|
||||||
|
|
||||||
|
|
||||||
def patched_get_model(self, **kwargs):
|
def patched_get_model(self, **kwargs):
|
||||||
@ -97,20 +97,15 @@ def patched_inswapper_init(self, model_file=None, session=None):
|
|||||||
self.input_size = tuple(input_shape[2:4][::-1])
|
self.input_size = tuple(input_shape[2:4][::-1])
|
||||||
|
|
||||||
|
|
||||||
def patched_get_default_providers():
|
def patch_insightface(get_model, faceanalysis_init, faceanalysis_prepare, inswapper_init):
|
||||||
return ['TensorrtExecutionProvider', 'CUDAExecutionProvider', 'CPUExecutionProvider']
|
|
||||||
|
|
||||||
|
|
||||||
def patch_insightface(get_default_providers, get_model, faceanalysis_init, faceanalysis_prepare, inswapper_init):
|
|
||||||
insightface.model_zoo.model_zoo.get_default_providers = get_default_providers
|
|
||||||
insightface.model_zoo.model_zoo.ModelRouter.get_model = get_model
|
insightface.model_zoo.model_zoo.ModelRouter.get_model = get_model
|
||||||
insightface.app.FaceAnalysis.__init__ = faceanalysis_init
|
insightface.app.FaceAnalysis.__init__ = faceanalysis_init
|
||||||
insightface.app.FaceAnalysis.prepare = faceanalysis_prepare
|
insightface.app.FaceAnalysis.prepare = faceanalysis_prepare
|
||||||
insightface.model_zoo.inswapper.INSwapper.__init__ = inswapper_init
|
insightface.model_zoo.inswapper.INSwapper.__init__ = inswapper_init
|
||||||
|
|
||||||
|
|
||||||
original_functions = [patched_get_default_providers, ModelRouter.get_model, FaceAnalysis.__init__, FaceAnalysis.prepare, INSwapper.__init__]
|
original_functions = [ModelRouter.get_model, FaceAnalysis.__init__, FaceAnalysis.prepare, INSwapper.__init__]
|
||||||
patched_functions = [patched_get_default_providers, patched_get_model, patched_faceanalysis_init, patched_faceanalysis_prepare, patched_inswapper_init]
|
patched_functions = [patched_get_model, patched_faceanalysis_init, patched_faceanalysis_prepare, patched_inswapper_init]
|
||||||
|
|
||||||
|
|
||||||
def apply_logging_patch(console_logging_level):
|
def apply_logging_patch(console_logging_level):
|
||||||
@ -119,7 +114,7 @@ def apply_logging_patch(console_logging_level):
|
|||||||
logger.setLevel(logging.WARNING)
|
logger.setLevel(logging.WARNING)
|
||||||
elif console_logging_level == 1:
|
elif console_logging_level == 1:
|
||||||
patch_insightface(*patched_functions)
|
patch_insightface(*patched_functions)
|
||||||
logger.setLevel(logging.STATUS)
|
logger.setLevel(logging.INFO)
|
||||||
elif console_logging_level == 2:
|
elif console_logging_level == 2:
|
||||||
patch_insightface(*original_functions)
|
patch_insightface(*original_functions)
|
||||||
logger.setLevel(logging.INFO)
|
logger.setLevel(logging.INFO)
|
||||||
|
|||||||
243
scripts/faceswap.py
Normal file
243
scripts/faceswap.py
Normal file
@ -0,0 +1,243 @@
|
|||||||
|
import gradio as gr
|
||||||
|
import modules.scripts as scripts
|
||||||
|
from modules.upscaler import Upscaler, UpscalerData
|
||||||
|
from modules import scripts, shared, images, scripts_postprocessing
|
||||||
|
from modules.processing import (
|
||||||
|
StableDiffusionProcessing,
|
||||||
|
StableDiffusionProcessingImg2Img,
|
||||||
|
)
|
||||||
|
from modules.shared import cmd_opts, opts, state
|
||||||
|
from PIL import Image
|
||||||
|
import glob
|
||||||
|
from modules.face_restoration import FaceRestoration
|
||||||
|
|
||||||
|
from scripts.logger import logger
|
||||||
|
from scripts.swapper import UpscaleOptions, swap_face
|
||||||
|
from scripts.version import version_flag, app_title
|
||||||
|
from scripts.console_log_patch import apply_logging_patch
|
||||||
|
import os
|
||||||
|
|
||||||
|
MODELS_PATH = None
|
||||||
|
|
||||||
|
def get_models():
|
||||||
|
global MODELS_PATH
|
||||||
|
models_path = os.path.join(scripts.basedir(), "models/roop/*")
|
||||||
|
models = glob.glob(models_path)
|
||||||
|
models = [x for x in models if x.endswith(".onnx") or x.endswith(".pth")]
|
||||||
|
models_names = []
|
||||||
|
for model in models:
|
||||||
|
model_path = os.path.split(model)
|
||||||
|
if MODELS_PATH is None:
|
||||||
|
MODELS_PATH = model_path[0]
|
||||||
|
model_name = model_path[1]
|
||||||
|
models_names.append(model_name)
|
||||||
|
return models_names
|
||||||
|
|
||||||
|
|
||||||
|
class FaceSwapScript(scripts.Script):
|
||||||
|
def title(self):
|
||||||
|
return f"{app_title}"
|
||||||
|
|
||||||
|
def show(self, is_img2img):
|
||||||
|
return scripts.AlwaysVisible
|
||||||
|
|
||||||
|
def ui(self, is_img2img):
|
||||||
|
with gr.Accordion(f"{app_title} (ex Roop-GE)", open=False):
|
||||||
|
with gr.Column():
|
||||||
|
img = gr.inputs.Image(type="pil")
|
||||||
|
enable = gr.Checkbox(False, label="Enable", info=f"The Fast and Simple \"roop-based\" FaceSwap Extension - {version_flag}")
|
||||||
|
with gr.Row():
|
||||||
|
source_faces_index = gr.Textbox(
|
||||||
|
value="0",
|
||||||
|
placeholder="Which face(s) to use as source (comma separated)",
|
||||||
|
label="Comma separated face number(s) from swap-source image (above); Example: 0,2,1",
|
||||||
|
)
|
||||||
|
faces_index = gr.Textbox(
|
||||||
|
value="0",
|
||||||
|
placeholder="Which face to swap (comma separated)",
|
||||||
|
label="Comma separated face number(s) for target image (result); Example: 1,0,2",
|
||||||
|
)
|
||||||
|
with gr.Row():
|
||||||
|
face_restorer_name = gr.Radio(
|
||||||
|
label="Restore Face",
|
||||||
|
choices=["None"] + [x.name() for x in shared.face_restorers],
|
||||||
|
value=shared.face_restorers[0].name(),
|
||||||
|
type="value",
|
||||||
|
)
|
||||||
|
face_restorer_visibility = gr.Slider(
|
||||||
|
0, 1, 1, step=0.1, label="Restore Face Visibility"
|
||||||
|
)
|
||||||
|
restore_first = gr.Checkbox(
|
||||||
|
True,
|
||||||
|
label="1. Restore Face -> 2. Upscale (-Uncheck- if you want vice versa)",
|
||||||
|
info="Postprocessing Order"
|
||||||
|
)
|
||||||
|
upscaler_name = gr.inputs.Dropdown(
|
||||||
|
choices=[upscaler.name for upscaler in shared.sd_upscalers],
|
||||||
|
label="Upscaler",
|
||||||
|
)
|
||||||
|
with gr.Row():
|
||||||
|
upscaler_scale = gr.Slider(1, 8, 1, step=0.1, label="Scale by")
|
||||||
|
upscaler_visibility = gr.Slider(
|
||||||
|
0, 1, 1, step=0.1, label="Upscaler Visibility (if scale = 1)"
|
||||||
|
)
|
||||||
|
|
||||||
|
swap_in_source = gr.Checkbox(
|
||||||
|
False,
|
||||||
|
label="Swap in source image",
|
||||||
|
visible=is_img2img,
|
||||||
|
)
|
||||||
|
swap_in_generated = gr.Checkbox(
|
||||||
|
True,
|
||||||
|
label="Swap in generated image",
|
||||||
|
visible=is_img2img,
|
||||||
|
)
|
||||||
|
|
||||||
|
models = get_models()
|
||||||
|
with gr.Row():
|
||||||
|
if len(models) == 0:
|
||||||
|
logger.warning(
|
||||||
|
"You should at least have one model in models directory, please read the doc here : https://github.com/Gourieff/sd-webui-reactor/"
|
||||||
|
)
|
||||||
|
model = gr.inputs.Dropdown(
|
||||||
|
choices=models,
|
||||||
|
label="Model not found, please download one and reload WebUI",
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
model = gr.inputs.Dropdown(
|
||||||
|
choices=models, label="Model", default=models[0]
|
||||||
|
)
|
||||||
|
console_logging_level = gr.Radio(
|
||||||
|
["No log", "Minimum", "Default"],
|
||||||
|
value="Minimum",
|
||||||
|
label="Console Log Level",
|
||||||
|
type="index",
|
||||||
|
)
|
||||||
|
|
||||||
|
return [
|
||||||
|
img,
|
||||||
|
enable,
|
||||||
|
source_faces_index,
|
||||||
|
faces_index,
|
||||||
|
model,
|
||||||
|
face_restorer_name,
|
||||||
|
face_restorer_visibility,
|
||||||
|
restore_first,
|
||||||
|
upscaler_name,
|
||||||
|
upscaler_scale,
|
||||||
|
upscaler_visibility,
|
||||||
|
swap_in_source,
|
||||||
|
swap_in_generated,
|
||||||
|
console_logging_level
|
||||||
|
]
|
||||||
|
|
||||||
|
|
||||||
|
@property
|
||||||
|
def upscaler(self) -> UpscalerData:
|
||||||
|
for upscaler in shared.sd_upscalers:
|
||||||
|
if upscaler.name == self.upscaler_name:
|
||||||
|
return upscaler
|
||||||
|
return None
|
||||||
|
|
||||||
|
@property
|
||||||
|
def face_restorer(self) -> FaceRestoration:
|
||||||
|
for face_restorer in shared.face_restorers:
|
||||||
|
if face_restorer.name() == self.face_restorer_name:
|
||||||
|
return face_restorer
|
||||||
|
return None
|
||||||
|
|
||||||
|
@property
|
||||||
|
def upscale_options(self) -> UpscaleOptions:
|
||||||
|
return UpscaleOptions(
|
||||||
|
do_restore_first = self.restore_first,
|
||||||
|
scale=self.upscaler_scale,
|
||||||
|
upscaler=self.upscaler,
|
||||||
|
face_restorer=self.face_restorer,
|
||||||
|
upscale_visibility=self.upscaler_visibility,
|
||||||
|
restorer_visibility=self.face_restorer_visibility,
|
||||||
|
)
|
||||||
|
|
||||||
|
def process(
|
||||||
|
self,
|
||||||
|
p: StableDiffusionProcessing,
|
||||||
|
img,
|
||||||
|
enable,
|
||||||
|
source_faces_index,
|
||||||
|
faces_index,
|
||||||
|
model,
|
||||||
|
face_restorer_name,
|
||||||
|
face_restorer_visibility,
|
||||||
|
restore_first,
|
||||||
|
upscaler_name,
|
||||||
|
upscaler_scale,
|
||||||
|
upscaler_visibility,
|
||||||
|
swap_in_source,
|
||||||
|
swap_in_generated,
|
||||||
|
console_logging_level,
|
||||||
|
):
|
||||||
|
global MODELS_PATH
|
||||||
|
self.source = img
|
||||||
|
self.face_restorer_name = face_restorer_name
|
||||||
|
self.upscaler_scale = upscaler_scale
|
||||||
|
self.upscaler_visibility = upscaler_visibility
|
||||||
|
self.face_restorer_visibility = face_restorer_visibility
|
||||||
|
self.enable = enable
|
||||||
|
self.restore_first = restore_first
|
||||||
|
self.upscaler_name = upscaler_name
|
||||||
|
self.swap_in_generated = swap_in_generated
|
||||||
|
self.model = os.path.join(MODELS_PATH,model)
|
||||||
|
self.console_logging_level = console_logging_level
|
||||||
|
self.source_faces_index = [
|
||||||
|
int(x) for x in source_faces_index.strip(",").split(",") if x.isnumeric()
|
||||||
|
]
|
||||||
|
self.faces_index = [
|
||||||
|
int(x) for x in faces_index.strip(",").split(",") if x.isnumeric()
|
||||||
|
]
|
||||||
|
if len(self.source_faces_index) == 0:
|
||||||
|
self.source_faces_index = [0]
|
||||||
|
if len(self.faces_index) == 0:
|
||||||
|
self.faces_index = [0]
|
||||||
|
if self.enable:
|
||||||
|
if self.source is not None:
|
||||||
|
apply_logging_patch(console_logging_level)
|
||||||
|
if isinstance(p, StableDiffusionProcessingImg2Img) and swap_in_source:
|
||||||
|
logger.info(f"Working: source face index %s, target face index %s", self.source_faces_index, self.faces_index)
|
||||||
|
|
||||||
|
for i in range(len(p.init_images)):
|
||||||
|
logger.info(f"Swap in %s", i)
|
||||||
|
result = swap_face(
|
||||||
|
self.source,
|
||||||
|
p.init_images[i],
|
||||||
|
source_faces_index=self.source_faces_index,
|
||||||
|
faces_index=self.faces_index,
|
||||||
|
model=self.model,
|
||||||
|
upscale_options=self.upscale_options,
|
||||||
|
)
|
||||||
|
p.init_images[i] = result
|
||||||
|
else:
|
||||||
|
logger.error(f"Please provide a source face")
|
||||||
|
|
||||||
|
def postprocess_batch(self, p, *args, **kwargs):
|
||||||
|
if self.enable:
|
||||||
|
images = kwargs["images"]
|
||||||
|
|
||||||
|
def postprocess_image(self, p, script_pp: scripts.PostprocessImageArgs, *args):
|
||||||
|
if self.enable and self.swap_in_generated:
|
||||||
|
if self.source is not None:
|
||||||
|
logger.info(f"Working: source face index %s, target face index %s", self.source_faces_index, self.faces_index)
|
||||||
|
image: Image.Image = script_pp.image
|
||||||
|
result = swap_face(
|
||||||
|
self.source,
|
||||||
|
image,
|
||||||
|
source_faces_index=self.source_faces_index,
|
||||||
|
faces_index=self.faces_index,
|
||||||
|
model=self.model,
|
||||||
|
upscale_options=self.upscale_options,
|
||||||
|
)
|
||||||
|
try:
|
||||||
|
pp = scripts_postprocessing.PostprocessedImage(result)
|
||||||
|
pp.info = {}
|
||||||
|
p.extra_generation_params.update(pp.info)
|
||||||
|
script_pp.image = pp.image
|
||||||
|
except:
|
||||||
|
logger.error(f"Cannot create a result image")
|
||||||
1
scripts/globals.py
Normal file
1
scripts/globals.py
Normal file
@ -0,0 +1 @@
|
|||||||
|
IS_RUN: bool = False
|
||||||
@ -3,8 +3,7 @@ import copy
|
|||||||
import sys
|
import sys
|
||||||
|
|
||||||
from modules import shared
|
from modules import shared
|
||||||
from scripts.reactor_globals import IS_RUN
|
from scripts.globals import IS_RUN
|
||||||
from scripts.reactor_helpers import addLoggingLevel
|
|
||||||
|
|
||||||
|
|
||||||
class ColoredFormatter(logging.Formatter):
|
class ColoredFormatter(logging.Formatter):
|
||||||
@ -30,8 +29,8 @@ class ColoredFormatter(logging.Formatter):
|
|||||||
logger = logging.getLogger("ReActor")
|
logger = logging.getLogger("ReActor")
|
||||||
logger.propagate = False
|
logger.propagate = False
|
||||||
|
|
||||||
# Add Custom Level
|
# Custom Level name
|
||||||
addLoggingLevel("STATUS", logging.INFO + 5)
|
logging.addLevelName(logging.INFO, "STATUS")
|
||||||
|
|
||||||
# Add handler if we don't have one.
|
# Add handler if we don't have one.
|
||||||
if not logger.handlers:
|
if not logger.handlers:
|
||||||
@ -1,204 +0,0 @@
|
|||||||
'''
|
|
||||||
Thanks SpenserCai for the original version of the roop api script
|
|
||||||
-----------------------------------
|
|
||||||
--- ReActor External API v1.0.8a ---
|
|
||||||
-----------------------------------
|
|
||||||
'''
|
|
||||||
import os, glob
|
|
||||||
from datetime import datetime, date
|
|
||||||
from fastapi import FastAPI, Body
|
|
||||||
# from fastapi.exceptions import HTTPException
|
|
||||||
# from io import BytesIO
|
|
||||||
# from PIL import Image
|
|
||||||
# import base64
|
|
||||||
# import numpy as np
|
|
||||||
# import cv2
|
|
||||||
import asyncio
|
|
||||||
from concurrent.futures import ThreadPoolExecutor
|
|
||||||
# from concurrent.futures.process import ProcessPoolExecutor
|
|
||||||
# from contextlib import asynccontextmanager
|
|
||||||
# import multiprocessing
|
|
||||||
|
|
||||||
# from modules.api.models import *
|
|
||||||
from modules import scripts, shared
|
|
||||||
from modules.api import api
|
|
||||||
|
|
||||||
import gradio as gr
|
|
||||||
|
|
||||||
from scripts.reactor_swapper import EnhancementOptions, blend_faces, swap_face, DetectionOptions
|
|
||||||
from scripts.reactor_logger import logger
|
|
||||||
from scripts.reactor_helpers import get_facemodels
|
|
||||||
|
|
||||||
|
|
||||||
# @asynccontextmanager
|
|
||||||
# async def lifespan(app: FastAPI):
|
|
||||||
# app.state.executor = ProcessPoolExecutor(max_workers=4)
|
|
||||||
# yield
|
|
||||||
# app.state.executor.shutdown()
|
|
||||||
|
|
||||||
# app = FastAPI(lifespan=lifespan)
|
|
||||||
|
|
||||||
# def run_app(a: FastAPI):
|
|
||||||
# global app
|
|
||||||
# a = app
|
|
||||||
# return a
|
|
||||||
|
|
||||||
# _executor_tp = ThreadPoolExecutor(max_workers=8)
|
|
||||||
# def entry_point():
|
|
||||||
# _executor_pp = ProcessPoolExecutor(max_workers=8)
|
|
||||||
# pool = multiprocessing.Pool(4)
|
|
||||||
|
|
||||||
async def run_event(app, fn, *args):
|
|
||||||
loop = asyncio.get_event_loop()
|
|
||||||
return await loop.run_in_executor(app.state.executor, fn, *args)
|
|
||||||
|
|
||||||
|
|
||||||
def default_file_path():
|
|
||||||
time = datetime.now()
|
|
||||||
today = date.today()
|
|
||||||
current_date = today.strftime('%Y-%m-%d')
|
|
||||||
current_time = time.strftime('%H-%M-%S')
|
|
||||||
output_file = 'output_'+current_date+'_'+current_time+'.png'
|
|
||||||
return os.path.join(os.path.abspath("outputs/api"), output_file)
|
|
||||||
|
|
||||||
def get_face_restorer(name):
|
|
||||||
for restorer in shared.face_restorers:
|
|
||||||
if restorer.name() == name:
|
|
||||||
return restorer
|
|
||||||
return None
|
|
||||||
|
|
||||||
def get_upscaler(name):
|
|
||||||
for upscaler in shared.sd_upscalers:
|
|
||||||
if upscaler.name == name:
|
|
||||||
return upscaler
|
|
||||||
return None
|
|
||||||
|
|
||||||
def get_models():
|
|
||||||
models_path = os.path.join(scripts.basedir(), "models/insightface/*")
|
|
||||||
models = glob.glob(models_path)
|
|
||||||
models = [x for x in models if x.endswith(".onnx") or x.endswith(".pth")]
|
|
||||||
return models
|
|
||||||
|
|
||||||
def get_full_model(model_name):
|
|
||||||
models = get_models()
|
|
||||||
for model in models:
|
|
||||||
model_path = os.path.split(model)
|
|
||||||
if model_path[1] == model_name:
|
|
||||||
return model
|
|
||||||
return None
|
|
||||||
|
|
||||||
# def decode_base64_to_image_rgba(encoding):
|
|
||||||
# if encoding.startswith("data:image/"):
|
|
||||||
# encoding = encoding.split(";")[1].split(",")[1]
|
|
||||||
# try:
|
|
||||||
# im_bytes = base64.b64decode(encoding)
|
|
||||||
# im_arr = np.frombuffer(im_bytes, dtype=np.uint8) # im_arr is one-dim Numpy array
|
|
||||||
# img = cv2.imdecode(im_arr, flags=cv2.IMREAD_UNCHANGED)
|
|
||||||
# img = cv2.cvtColor(img, cv2.COLOR_BGRA2RGBA)
|
|
||||||
# image = Image.fromarray(img, mode="RGBA")
|
|
||||||
# return image
|
|
||||||
# except Exception as e:
|
|
||||||
# raise HTTPException(status_code=500, detail="Invalid encoded image") from e
|
|
||||||
|
|
||||||
def reactor_api(_: gr.Blocks, app: FastAPI):
|
|
||||||
app.state.executor = ThreadPoolExecutor(max_workers=8)
|
|
||||||
@app.post("/reactor/image")
|
|
||||||
async def reactor_image(
|
|
||||||
source_image: str = Body("",title="Source Face Image"),
|
|
||||||
target_image: str = Body("",title="Target Image"),
|
|
||||||
source_faces_index: list[int] = Body([0],title="Comma separated face number(s) from swap-source image"),
|
|
||||||
face_index: list[int] = Body([0],title="Comma separated face number(s) for target image (result)"),
|
|
||||||
upscaler: str = Body("None",title="Upscaler"),
|
|
||||||
scale: float = Body(1,title="Scale by"),
|
|
||||||
upscale_visibility: float = Body(1,title="Upscaler visibility (if scale = 1)"),
|
|
||||||
face_restorer: str = Body("None",title="Restore Face: 0 - None; 1 - CodeFormer; 2 - GFPGA"),
|
|
||||||
restorer_visibility: float = Body(1,title="Restore visibility value"),
|
|
||||||
codeformer_weight: float = Body(0.5,title="CodeFormer Weight"),
|
|
||||||
restore_first: int = Body(1,title="Restore face -> Then upscale, 1 - True, 0 - False"),
|
|
||||||
model: str = Body("inswapper_128.onnx",title="Model"),
|
|
||||||
gender_source: int = Body(0,title="Gender Detection (Source) (0 - No, 1 - Female Only, 2 - Male Only)"),
|
|
||||||
gender_target: int = Body(0,title="Gender Detection (Target) (0 - No, 1 - Female Only, 2 - Male Only)"),
|
|
||||||
save_to_file: int = Body(0,title="Save Result to file, 0 - No, 1 - Yes"),
|
|
||||||
result_file_path: str = Body("",title="(if 'save_to_file = 1') Result file path"),
|
|
||||||
device: str = Body("CPU",title="CPU or CUDA (if you have it)"),
|
|
||||||
mask_face: int = Body(0,title="Face Mask Correction, 1 - True, 0 - False"),
|
|
||||||
select_source: int = Body(0,title="Select Source, 0 - Image, 1 - Face Model, 2 - Source Folder"),
|
|
||||||
face_model: str = Body("None",title="Filename of the face model (from 'models/reactor/faces'), e.g. elena.safetensors"),
|
|
||||||
source_folder: str = Body("",title="The path to the folder containing source faces images"),
|
|
||||||
random_image: int = Body(0,title="Randomly select an image from the path"),
|
|
||||||
upscale_force: int = Body(0,title="Force Upscale even if no face found"),
|
|
||||||
det_thresh: float = Body(0.5,title="Face Detection Threshold"),
|
|
||||||
det_maxnum: int = Body(0,title="Maximum number of faces to detect (0 is unlimited)"),
|
|
||||||
):
|
|
||||||
s_image = api.decode_base64_to_image(source_image) if select_source == 0 else None
|
|
||||||
t_image = api.decode_base64_to_image(target_image)
|
|
||||||
|
|
||||||
if t_image.mode == 'RGBA':
|
|
||||||
_, _, _, alpha = t_image.split()
|
|
||||||
else:
|
|
||||||
alpha = None
|
|
||||||
|
|
||||||
sf_index = source_faces_index
|
|
||||||
f_index = face_index
|
|
||||||
gender_s = gender_source
|
|
||||||
gender_t = gender_target
|
|
||||||
restore_first_bool = True if restore_first == 1 else False
|
|
||||||
mask_face = True if mask_face == 1 else False
|
|
||||||
random_image = False if random_image == 0 else True
|
|
||||||
upscale_force = False if upscale_force == 0 else True
|
|
||||||
up_options = EnhancementOptions(do_restore_first=restore_first_bool, scale=scale, upscaler=get_upscaler(upscaler), upscale_visibility=upscale_visibility,face_restorer=get_face_restorer(face_restorer),restorer_visibility=restorer_visibility,codeformer_weight=codeformer_weight,upscale_force=upscale_force)
|
|
||||||
det_options = DetectionOptions(det_thresh=det_thresh, det_maxnum=det_maxnum)
|
|
||||||
use_model = get_full_model(model)
|
|
||||||
if use_model is None:
|
|
||||||
Exception("Model not found")
|
|
||||||
|
|
||||||
args = [s_image, t_image, use_model, sf_index, f_index, up_options, gender_s, gender_t, True, True, device, mask_face, select_source, face_model, source_folder, None, random_image,det_options]
|
|
||||||
# result,_,_ = pool.map(swap_face, *args)
|
|
||||||
result,_,_ = await run_event(app,swap_face,*args)
|
|
||||||
# result,_,_ = swap_face(s_image, t_image, use_model, sf_index, f_index, up_options, gender_s, gender_t, True, True, device, mask_face, select_source, face_model, source_folder, None, random_image,det_options)
|
|
||||||
|
|
||||||
if alpha is not None:
|
|
||||||
result = result.convert("RGBA")
|
|
||||||
result.putalpha(alpha)
|
|
||||||
|
|
||||||
if save_to_file == 1:
|
|
||||||
if result_file_path == "":
|
|
||||||
result_file_path = default_file_path()
|
|
||||||
try:
|
|
||||||
file_format = os.path.split(result_file_path)[1].split(".")[1]
|
|
||||||
result.save(result_file_path, format=file_format)
|
|
||||||
logger.status("Result has been saved to: %s", result_file_path)
|
|
||||||
except Exception as e:
|
|
||||||
logger.error("Error while saving result: %s",e)
|
|
||||||
return {"image": api.encode_pil_to_base64(result)}
|
|
||||||
|
|
||||||
@app.get("/reactor/models")
|
|
||||||
async def reactor_models():
|
|
||||||
model_names = [os.path.split(model)[1] for model in get_models()]
|
|
||||||
return {"models": model_names}
|
|
||||||
|
|
||||||
@app.get("/reactor/upscalers")
|
|
||||||
async def reactor_upscalers():
|
|
||||||
names = [upscaler.name for upscaler in shared.sd_upscalers]
|
|
||||||
return {"upscalers": names}
|
|
||||||
|
|
||||||
@app.get("/reactor/facemodels")
|
|
||||||
async def reactor_facemodels():
|
|
||||||
facemodels = [os.path.split(model)[1].split(".")[0] for model in get_facemodels()]
|
|
||||||
return {"facemodels": facemodels}
|
|
||||||
|
|
||||||
@app.post("/reactor/facemodels")
|
|
||||||
async def reactor_facemodels_build(
|
|
||||||
source_images: list[str] = Body([""],title="Source Face Image List"),
|
|
||||||
name: str = Body("",title="Face Model Name"),
|
|
||||||
compute_method: int = Body(0,title="Compute Method (Mean, Median, Mode)"),
|
|
||||||
):
|
|
||||||
images = [api.decode_base64_to_image(img) for img in source_images]
|
|
||||||
blend_faces(images, name, compute_method, False, is_api=True)
|
|
||||||
return {"facemodels": [os.path.split(model)[1].split(".")[0] for model in get_facemodels()]}
|
|
||||||
|
|
||||||
try:
|
|
||||||
import modules.script_callbacks as script_callbacks
|
|
||||||
script_callbacks.on_app_started(reactor_api)
|
|
||||||
except:
|
|
||||||
pass
|
|
||||||
@ -1,147 +0,0 @@
|
|||||||
import traceback
|
|
||||||
|
|
||||||
import cv2
|
|
||||||
import numpy as np
|
|
||||||
from modules import images
|
|
||||||
from PIL import Image
|
|
||||||
|
|
||||||
|
|
||||||
from scripts.reactor_entities.rect import Point, Rect
|
|
||||||
|
|
||||||
|
|
||||||
class FaceArea:
|
|
||||||
def __init__(self, entire_image: np.ndarray, face_area: Rect, face_margin: float, face_size: int, upscaler: str):
|
|
||||||
self.face_area = face_area
|
|
||||||
self.center = face_area.center
|
|
||||||
left, top, right, bottom = face_area.to_square()
|
|
||||||
|
|
||||||
self.left, self.top, self.right, self.bottom = self.__ensure_margin(
|
|
||||||
left, top, right, bottom, entire_image, face_margin
|
|
||||||
)
|
|
||||||
|
|
||||||
self.width = self.right - self.left
|
|
||||||
self.height = self.bottom - self.top
|
|
||||||
|
|
||||||
self.image = self.__crop_face_image(entire_image, face_size, upscaler)
|
|
||||||
self.face_size = face_size
|
|
||||||
self.scale_factor = face_size / self.width
|
|
||||||
self.face_area_on_image = self.__get_face_area_on_image()
|
|
||||||
self.landmarks_on_image = self.__get_landmarks_on_image()
|
|
||||||
|
|
||||||
def __get_face_area_on_image(self):
|
|
||||||
left = int((self.face_area.left - self.left) * self.scale_factor)
|
|
||||||
top = int((self.face_area.top - self.top) * self.scale_factor)
|
|
||||||
right = int((self.face_area.right - self.left) * self.scale_factor)
|
|
||||||
bottom = int((self.face_area.bottom - self.top) * self.scale_factor)
|
|
||||||
return self.__clip_values(left, top, right, bottom)
|
|
||||||
|
|
||||||
def __get_landmarks_on_image(self):
|
|
||||||
landmarks = []
|
|
||||||
if self.face_area.landmarks is not None:
|
|
||||||
for landmark in self.face_area.landmarks:
|
|
||||||
landmarks.append(
|
|
||||||
Point(
|
|
||||||
int((landmark.x - self.left) * self.scale_factor),
|
|
||||||
int((landmark.y - self.top) * self.scale_factor),
|
|
||||||
)
|
|
||||||
)
|
|
||||||
return landmarks
|
|
||||||
|
|
||||||
def __crop_face_image(self, entire_image: np.ndarray, face_size: int, upscaler: str):
|
|
||||||
cropped = entire_image[self.top : self.bottom, self.left : self.right, :]
|
|
||||||
if upscaler:
|
|
||||||
return images.resize_image(0, Image.fromarray(cropped), face_size, face_size, upscaler)
|
|
||||||
else:
|
|
||||||
return Image.fromarray(cv2.resize(cropped, dsize=(face_size, face_size)))
|
|
||||||
|
|
||||||
def __ensure_margin(self, left: int, top: int, right: int, bottom: int, entire_image: np.ndarray, margin: float):
|
|
||||||
entire_height, entire_width = entire_image.shape[:2]
|
|
||||||
|
|
||||||
side_length = right - left
|
|
||||||
margin = min(min(entire_height, entire_width) / side_length, margin)
|
|
||||||
diff = int((side_length * margin - side_length) / 2)
|
|
||||||
|
|
||||||
top = top - diff
|
|
||||||
bottom = bottom + diff
|
|
||||||
left = left - diff
|
|
||||||
right = right + diff
|
|
||||||
|
|
||||||
if top < 0:
|
|
||||||
bottom = bottom - top
|
|
||||||
top = 0
|
|
||||||
if left < 0:
|
|
||||||
right = right - left
|
|
||||||
left = 0
|
|
||||||
|
|
||||||
if bottom > entire_height:
|
|
||||||
top = top - (bottom - entire_height)
|
|
||||||
bottom = entire_height
|
|
||||||
if right > entire_width:
|
|
||||||
left = left - (right - entire_width)
|
|
||||||
right = entire_width
|
|
||||||
|
|
||||||
return left, top, right, bottom
|
|
||||||
|
|
||||||
def get_angle(self) -> float:
|
|
||||||
landmarks = getattr(self.face_area, "landmarks", None)
|
|
||||||
if landmarks is None:
|
|
||||||
return 0
|
|
||||||
|
|
||||||
eye1 = getattr(landmarks, "eye1", None)
|
|
||||||
eye2 = getattr(landmarks, "eye2", None)
|
|
||||||
if eye2 is None or eye1 is None:
|
|
||||||
return 0
|
|
||||||
|
|
||||||
try:
|
|
||||||
dx = eye2.x - eye1.x
|
|
||||||
dy = eye2.y - eye1.y
|
|
||||||
if dx == 0:
|
|
||||||
dx = 1
|
|
||||||
angle = np.arctan(dy / dx) * 180 / np.pi
|
|
||||||
|
|
||||||
if dx < 0:
|
|
||||||
angle = (angle + 180) % 360
|
|
||||||
return angle
|
|
||||||
except Exception:
|
|
||||||
print(traceback.format_exc())
|
|
||||||
return 0
|
|
||||||
|
|
||||||
def rotate_face_area_on_image(self, angle: float):
|
|
||||||
center = [
|
|
||||||
(self.face_area_on_image[0] + self.face_area_on_image[2]) / 2,
|
|
||||||
(self.face_area_on_image[1] + self.face_area_on_image[3]) / 2,
|
|
||||||
]
|
|
||||||
|
|
||||||
points = [
|
|
||||||
[self.face_area_on_image[0], self.face_area_on_image[1]],
|
|
||||||
[self.face_area_on_image[2], self.face_area_on_image[3]],
|
|
||||||
]
|
|
||||||
|
|
||||||
angle = np.radians(angle)
|
|
||||||
rot_matrix = np.array([[np.cos(angle), -np.sin(angle)], [np.sin(angle), np.cos(angle)]])
|
|
||||||
|
|
||||||
points = np.array(points) - center
|
|
||||||
points = np.dot(points, rot_matrix.T)
|
|
||||||
points += center
|
|
||||||
left, top, right, bottom = (int(points[0][0]), int(points[0][1]), int(points[1][0]), int(points[1][1]))
|
|
||||||
|
|
||||||
left, right = (right, left) if left > right else (left, right)
|
|
||||||
top, bottom = (bottom, top) if top > bottom else (top, bottom)
|
|
||||||
|
|
||||||
width, height = right - left, bottom - top
|
|
||||||
if width < height:
|
|
||||||
left, right = left - (height - width) // 2, right + (height - width) // 2
|
|
||||||
elif height < width:
|
|
||||||
top, bottom = top - (width - height) // 2, bottom + (width - height) // 2
|
|
||||||
return self.__clip_values(left, top, right, bottom)
|
|
||||||
|
|
||||||
def __clip_values(self, *args):
|
|
||||||
result = []
|
|
||||||
for val in args:
|
|
||||||
if val < 0:
|
|
||||||
result.append(0)
|
|
||||||
elif val > self.face_size:
|
|
||||||
result.append(self.face_size)
|
|
||||||
else:
|
|
||||||
result.append(val)
|
|
||||||
return tuple(result)
|
|
||||||
@ -1,78 +0,0 @@
|
|||||||
from typing import Dict, NamedTuple, Tuple
|
|
||||||
|
|
||||||
import numpy as np
|
|
||||||
|
|
||||||
|
|
||||||
class Point(NamedTuple):
|
|
||||||
x: int
|
|
||||||
y: int
|
|
||||||
|
|
||||||
|
|
||||||
class Landmarks(NamedTuple):
|
|
||||||
eye1: Point
|
|
||||||
eye2: Point
|
|
||||||
nose: Point
|
|
||||||
mouth1: Point
|
|
||||||
mouth2: Point
|
|
||||||
|
|
||||||
|
|
||||||
class Rect:
|
|
||||||
def __init__(
|
|
||||||
self,
|
|
||||||
left: int,
|
|
||||||
top: int,
|
|
||||||
right: int,
|
|
||||||
bottom: int,
|
|
||||||
tag: str = "face",
|
|
||||||
landmarks: Landmarks = None,
|
|
||||||
attributes: Dict[str, str] = {},
|
|
||||||
) -> None:
|
|
||||||
self.tag = tag
|
|
||||||
self.left = left
|
|
||||||
self.top = top
|
|
||||||
self.right = right
|
|
||||||
self.bottom = bottom
|
|
||||||
self.center = int((right + left) / 2)
|
|
||||||
self.middle = int((top + bottom) / 2)
|
|
||||||
self.width = right - left
|
|
||||||
self.height = bottom - top
|
|
||||||
self.size = self.width * self.height
|
|
||||||
self.landmarks = landmarks
|
|
||||||
self.attributes = attributes
|
|
||||||
|
|
||||||
@classmethod
|
|
||||||
def from_ndarray(
|
|
||||||
cls,
|
|
||||||
face_box: np.ndarray,
|
|
||||||
tag: str = "face",
|
|
||||||
landmarks: Landmarks = None,
|
|
||||||
attributes: Dict[str, str] = {},
|
|
||||||
) -> "Rect":
|
|
||||||
left, top, right, bottom, *_ = list(map(int, face_box))
|
|
||||||
return cls(left, top, right, bottom, tag, landmarks, attributes)
|
|
||||||
|
|
||||||
def to_tuple(self) -> Tuple[int, int, int, int]:
|
|
||||||
return self.left, self.top, self.right, self.bottom
|
|
||||||
|
|
||||||
def to_square(self):
|
|
||||||
left, top, right, bottom = self.to_tuple()
|
|
||||||
|
|
||||||
width = right - left
|
|
||||||
height = bottom - top
|
|
||||||
|
|
||||||
if width % 2 == 1:
|
|
||||||
right = right + 1
|
|
||||||
width = width + 1
|
|
||||||
if height % 2 == 1:
|
|
||||||
bottom = bottom + 1
|
|
||||||
height = height + 1
|
|
||||||
|
|
||||||
diff = int(abs(width - height) / 2)
|
|
||||||
if width > height:
|
|
||||||
top = top - diff
|
|
||||||
bottom = bottom + diff
|
|
||||||
else:
|
|
||||||
left = left - diff
|
|
||||||
right = right + diff
|
|
||||||
|
|
||||||
return left, top, right, bottom
|
|
||||||
@ -1,739 +0,0 @@
|
|||||||
import os, glob
|
|
||||||
import gradio as gr
|
|
||||||
from PIL import Image
|
|
||||||
|
|
||||||
from typing import List
|
|
||||||
|
|
||||||
import modules.scripts as scripts
|
|
||||||
from modules.upscaler import Upscaler, UpscalerData
|
|
||||||
from modules import scripts, shared, images, scripts_postprocessing
|
|
||||||
from modules.processing import (
|
|
||||||
Processed,
|
|
||||||
StableDiffusionProcessing,
|
|
||||||
StableDiffusionProcessingImg2Img,
|
|
||||||
)
|
|
||||||
from modules.face_restoration import FaceRestoration
|
|
||||||
from modules.images import save_image
|
|
||||||
|
|
||||||
from reactor_ui import (
|
|
||||||
ui_main,
|
|
||||||
ui_upscale,
|
|
||||||
ui_tools,
|
|
||||||
ui_settings,
|
|
||||||
ui_detection,
|
|
||||||
)
|
|
||||||
from scripts.reactor_logger import logger
|
|
||||||
from scripts.reactor_swapper import (
|
|
||||||
EnhancementOptions,
|
|
||||||
DetectionOptions,
|
|
||||||
swap_face,
|
|
||||||
check_process_halt,
|
|
||||||
reset_messaged,
|
|
||||||
)
|
|
||||||
from scripts.reactor_version import version_flag, app_title
|
|
||||||
from scripts.console_log_patch import apply_logging_patch
|
|
||||||
from scripts.reactor_helpers import (
|
|
||||||
make_grid,
|
|
||||||
set_Device,
|
|
||||||
get_SDNEXT,
|
|
||||||
)
|
|
||||||
from scripts.reactor_globals import SWAPPER_MODELS_PATH #, DEVICE, DEVICE_LIST
|
|
||||||
|
|
||||||
def IA_cap(cond: bool, label: str=""):
|
|
||||||
return None
|
|
||||||
|
|
||||||
try:
|
|
||||||
from modules.ui_components import InputAccordion
|
|
||||||
NO_IA = False
|
|
||||||
except:
|
|
||||||
NO_IA = True
|
|
||||||
InputAccordion = IA_cap
|
|
||||||
|
|
||||||
|
|
||||||
def check_old_webui():
|
|
||||||
return NO_IA
|
|
||||||
|
|
||||||
|
|
||||||
class FaceSwapScript(scripts.Script):
|
|
||||||
def title(self):
|
|
||||||
return f"{app_title}"
|
|
||||||
|
|
||||||
def show(self, is_img2img):
|
|
||||||
return scripts.AlwaysVisible
|
|
||||||
|
|
||||||
def ui(self, is_img2img):
|
|
||||||
with (
|
|
||||||
gr.Accordion(f"{app_title}", open=False) if check_old_webui() else InputAccordion(False, label=f"{app_title}") as enable
|
|
||||||
):
|
|
||||||
|
|
||||||
# SD.Next or A1111 1.52:
|
|
||||||
if get_SDNEXT() or check_old_webui():
|
|
||||||
enable = gr.Checkbox(False, label="Enable")
|
|
||||||
|
|
||||||
# enable = gr.Checkbox(False, label="Enable", info=f"The Fast and Simple FaceSwap Extension - {version_flag}")
|
|
||||||
gr.Markdown(f"<sup>The Fast and Simple FaceSwap Extension - {version_flag}</sup>")
|
|
||||||
|
|
||||||
# TAB MAIN
|
|
||||||
msgs: dict = {
|
|
||||||
"extra_multiple_source": "",
|
|
||||||
}
|
|
||||||
img, imgs, selected_tab, select_source, face_model, source_folder, save_original, mask_face, source_faces_index, gender_source, faces_index, gender_target, face_restorer_name, face_restorer_visibility, codeformer_weight, swap_in_source, swap_in_generated, random_image = ui_main.show(is_img2img=is_img2img, **msgs)
|
|
||||||
|
|
||||||
# TAB DETECTION
|
|
||||||
det_thresh, det_maxnum = ui_detection.show()
|
|
||||||
|
|
||||||
# TAB UPSCALE
|
|
||||||
restore_first, upscaler_name, upscaler_scale, upscaler_visibility, upscale_force = ui_upscale.show()
|
|
||||||
|
|
||||||
# TAB TOOLS
|
|
||||||
ui_tools.show()
|
|
||||||
|
|
||||||
# TAB SETTINGS
|
|
||||||
model, device, console_logging_level, source_hash_check, target_hash_check = ui_settings.show()
|
|
||||||
|
|
||||||
gr.Markdown("<span style='display:block;text-align:right;padding:3px;font-size:0.666em;margin-bottom:-12px;'>by <a style='font-weight:normal' href='https://github.com/Gourieff' target='_blank'>Eugene Gourieff</a></span>")
|
|
||||||
|
|
||||||
return [
|
|
||||||
img,
|
|
||||||
enable,
|
|
||||||
source_faces_index,
|
|
||||||
faces_index,
|
|
||||||
model,
|
|
||||||
face_restorer_name,
|
|
||||||
face_restorer_visibility,
|
|
||||||
restore_first,
|
|
||||||
upscaler_name,
|
|
||||||
upscaler_scale,
|
|
||||||
upscaler_visibility,
|
|
||||||
swap_in_source,
|
|
||||||
swap_in_generated,
|
|
||||||
console_logging_level,
|
|
||||||
gender_source,
|
|
||||||
gender_target,
|
|
||||||
save_original,
|
|
||||||
codeformer_weight,
|
|
||||||
source_hash_check,
|
|
||||||
target_hash_check,
|
|
||||||
device,
|
|
||||||
mask_face,
|
|
||||||
select_source,
|
|
||||||
face_model,
|
|
||||||
source_folder,
|
|
||||||
imgs,
|
|
||||||
random_image,
|
|
||||||
upscale_force,
|
|
||||||
det_thresh,
|
|
||||||
det_maxnum,
|
|
||||||
selected_tab,
|
|
||||||
]
|
|
||||||
|
|
||||||
|
|
||||||
@property
|
|
||||||
def upscaler(self) -> UpscalerData:
|
|
||||||
for upscaler in shared.sd_upscalers:
|
|
||||||
if upscaler.name == self.upscaler_name:
|
|
||||||
return upscaler
|
|
||||||
return None
|
|
||||||
|
|
||||||
@property
|
|
||||||
def face_restorer(self) -> FaceRestoration:
|
|
||||||
for face_restorer in shared.face_restorers:
|
|
||||||
if face_restorer.name() == self.face_restorer_name:
|
|
||||||
return face_restorer
|
|
||||||
return None
|
|
||||||
|
|
||||||
@property
|
|
||||||
def enhancement_options(self) -> EnhancementOptions:
|
|
||||||
return EnhancementOptions(
|
|
||||||
do_restore_first=self.restore_first,
|
|
||||||
scale=self.upscaler_scale,
|
|
||||||
upscaler=self.upscaler,
|
|
||||||
face_restorer=self.face_restorer,
|
|
||||||
upscale_visibility=self.upscaler_visibility,
|
|
||||||
restorer_visibility=self.face_restorer_visibility,
|
|
||||||
codeformer_weight=self.codeformer_weight,
|
|
||||||
upscale_force=self.upscale_force
|
|
||||||
)
|
|
||||||
|
|
||||||
@property
|
|
||||||
def detection_options(self) -> DetectionOptions:
|
|
||||||
return DetectionOptions(
|
|
||||||
det_thresh=self.det_thresh,
|
|
||||||
det_maxnum=self.det_maxnum
|
|
||||||
)
|
|
||||||
|
|
||||||
def process(
|
|
||||||
self,
|
|
||||||
p: StableDiffusionProcessing,
|
|
||||||
img,
|
|
||||||
enable,
|
|
||||||
source_faces_index,
|
|
||||||
faces_index,
|
|
||||||
model,
|
|
||||||
face_restorer_name,
|
|
||||||
face_restorer_visibility,
|
|
||||||
restore_first,
|
|
||||||
upscaler_name,
|
|
||||||
upscaler_scale,
|
|
||||||
upscaler_visibility,
|
|
||||||
swap_in_source,
|
|
||||||
swap_in_generated,
|
|
||||||
console_logging_level,
|
|
||||||
gender_source,
|
|
||||||
gender_target,
|
|
||||||
save_original,
|
|
||||||
codeformer_weight,
|
|
||||||
source_hash_check,
|
|
||||||
target_hash_check,
|
|
||||||
device,
|
|
||||||
mask_face,
|
|
||||||
select_source,
|
|
||||||
face_model,
|
|
||||||
source_folder,
|
|
||||||
imgs,
|
|
||||||
random_image,
|
|
||||||
upscale_force,
|
|
||||||
det_thresh,
|
|
||||||
det_maxnum,
|
|
||||||
selected_tab,
|
|
||||||
):
|
|
||||||
self.enable = enable
|
|
||||||
if self.enable:
|
|
||||||
|
|
||||||
logger.debug("*** Start process")
|
|
||||||
|
|
||||||
reset_messaged()
|
|
||||||
if check_process_halt():
|
|
||||||
return
|
|
||||||
|
|
||||||
global SWAPPER_MODELS_PATH
|
|
||||||
if selected_tab == "tab_single":
|
|
||||||
self.source = img
|
|
||||||
else:
|
|
||||||
self.source = None
|
|
||||||
self.face_restorer_name = face_restorer_name
|
|
||||||
self.upscaler_scale = upscaler_scale
|
|
||||||
self.upscaler_visibility = upscaler_visibility
|
|
||||||
self.face_restorer_visibility = face_restorer_visibility
|
|
||||||
self.restore_first = restore_first
|
|
||||||
self.upscaler_name = upscaler_name
|
|
||||||
self.swap_in_source = swap_in_source
|
|
||||||
self.swap_in_generated = swap_in_generated
|
|
||||||
self.model = os.path.join(SWAPPER_MODELS_PATH,model)
|
|
||||||
self.console_logging_level = console_logging_level
|
|
||||||
self.gender_source = gender_source
|
|
||||||
self.gender_target = gender_target
|
|
||||||
self.save_original = save_original
|
|
||||||
self.codeformer_weight = codeformer_weight
|
|
||||||
self.source_hash_check = source_hash_check
|
|
||||||
self.target_hash_check = target_hash_check
|
|
||||||
self.device = device
|
|
||||||
self.mask_face = mask_face
|
|
||||||
self.select_source = select_source
|
|
||||||
self.face_model = face_model
|
|
||||||
self.source_folder = source_folder
|
|
||||||
if selected_tab == "tab_single":
|
|
||||||
self.source_imgs = None
|
|
||||||
else:
|
|
||||||
self.source_imgs = imgs
|
|
||||||
self.random_image = random_image
|
|
||||||
self.upscale_force = upscale_force
|
|
||||||
self.det_thresh=det_thresh
|
|
||||||
self.det_maxnum=det_maxnum
|
|
||||||
if self.gender_source is None or self.gender_source == "No":
|
|
||||||
self.gender_source = 0
|
|
||||||
if self.gender_target is None or self.gender_target == "No":
|
|
||||||
self.gender_target = 0
|
|
||||||
self.source_faces_index = [
|
|
||||||
int(x) for x in source_faces_index.strip().replace(" ", "").strip(",").split(",") if x.isnumeric()
|
|
||||||
]
|
|
||||||
self.faces_index = [
|
|
||||||
int(x) for x in faces_index.strip().replace(" ", "").strip(",").split(",") if x.isnumeric()
|
|
||||||
]
|
|
||||||
if len(self.source_faces_index) == 0:
|
|
||||||
self.source_faces_index = [0]
|
|
||||||
if len(self.faces_index) == 0:
|
|
||||||
self.faces_index = [0]
|
|
||||||
if self.save_original is None:
|
|
||||||
self.save_original = False
|
|
||||||
if self.source_hash_check is None:
|
|
||||||
self.source_hash_check = True
|
|
||||||
if self.target_hash_check is None:
|
|
||||||
self.target_hash_check = False
|
|
||||||
if self.mask_face is None:
|
|
||||||
self.mask_face = False
|
|
||||||
if self.random_image is None:
|
|
||||||
self.random_image = False
|
|
||||||
if self.upscale_force is None:
|
|
||||||
self.upscale_force = False
|
|
||||||
|
|
||||||
if shared.state.job_count > 0:
|
|
||||||
# logger.debug(f"Job count: {shared.state.job_count}")
|
|
||||||
self.face_restorer_visibility = shared.opts.data['restorer_visibility'] if 'restorer_visibility' in shared.opts.data.keys() else face_restorer_visibility
|
|
||||||
self.codeformer_weight = shared.opts.data['codeformer_weight'] if 'codeformer_weight' in shared.opts.data.keys() else codeformer_weight
|
|
||||||
self.mask_face = shared.opts.data['mask_face'] if 'mask_face' in shared.opts.data.keys() else mask_face
|
|
||||||
self.face_model = shared.opts.data['face_model'] if 'face_model' in shared.opts.data.keys() else face_model
|
|
||||||
|
|
||||||
logger.debug("*** Set Device")
|
|
||||||
set_Device(self.device)
|
|
||||||
|
|
||||||
if (self.save_original is None or not self.save_original) and (self.select_source == 2 or self.source_imgs is not None):
|
|
||||||
p.do_not_save_samples = True
|
|
||||||
|
|
||||||
if ((self.source is not None or self.source_imgs is not None) and self.select_source == 0) or ((self.face_model is not None and self.face_model != "None") and self.select_source == 1) or ((self.source_folder is not None and self.source_folder != "") and self.select_source == 2):
|
|
||||||
logger.debug("*** Log patch")
|
|
||||||
apply_logging_patch(console_logging_level)
|
|
||||||
|
|
||||||
if isinstance(p, StableDiffusionProcessingImg2Img) and self.swap_in_source:
|
|
||||||
|
|
||||||
logger.debug("*** Check process")
|
|
||||||
|
|
||||||
logger.status("Working: source face index %s, target face index %s", self.source_faces_index, self.faces_index)
|
|
||||||
|
|
||||||
for i in range(len(p.init_images)):
|
|
||||||
if len(p.init_images) > 1:
|
|
||||||
logger.status("Swap in %s", i)
|
|
||||||
result, output, swapped = swap_face(
|
|
||||||
self.source,
|
|
||||||
p.init_images[i],
|
|
||||||
source_faces_index=self.source_faces_index,
|
|
||||||
faces_index=self.faces_index,
|
|
||||||
model=self.model,
|
|
||||||
enhancement_options=self.enhancement_options,
|
|
||||||
gender_source=self.gender_source,
|
|
||||||
gender_target=self.gender_target,
|
|
||||||
source_hash_check=self.source_hash_check,
|
|
||||||
target_hash_check=self.target_hash_check,
|
|
||||||
device=self.device,
|
|
||||||
mask_face=self.mask_face,
|
|
||||||
select_source=self.select_source,
|
|
||||||
face_model = self.face_model,
|
|
||||||
source_folder = None,
|
|
||||||
source_imgs = None,
|
|
||||||
random_image = False,
|
|
||||||
detection_options=self.detection_options,
|
|
||||||
)
|
|
||||||
p.init_images[i] = result
|
|
||||||
# result_path = get_image_path(p.init_images[i], p.outpath_samples, "", p.all_seeds[i], p.all_prompts[i], "txt", p=p, suffix="-swapped")
|
|
||||||
# if len(output) != 0:
|
|
||||||
# with open(result_path, 'w', encoding="utf8") as f:
|
|
||||||
# f.writelines(output)
|
|
||||||
|
|
||||||
if shared.state.interrupted or shared.state.skipped:
|
|
||||||
return
|
|
||||||
|
|
||||||
else:
|
|
||||||
logger.error("Please provide a source face")
|
|
||||||
return
|
|
||||||
|
|
||||||
def postprocess(self, p: StableDiffusionProcessing, processed: Processed, *args):
|
|
||||||
if self.enable:
|
|
||||||
|
|
||||||
logger.debug("*** Check postprocess - before IF")
|
|
||||||
|
|
||||||
reset_messaged()
|
|
||||||
if check_process_halt():
|
|
||||||
return
|
|
||||||
|
|
||||||
if self.save_original or ((self.select_source == 2 and self.source_folder is not None and self.source_folder != "") or (self.select_source == 0 and self.source_imgs is not None and self.source is None)):
|
|
||||||
|
|
||||||
logger.debug("*** Check postprocess - after IF")
|
|
||||||
|
|
||||||
postprocess_run: bool = True
|
|
||||||
|
|
||||||
orig_images : List[Image.Image] = processed.images[processed.index_of_first_image:]
|
|
||||||
orig_infotexts : List[str] = processed.infotexts[processed.index_of_first_image:]
|
|
||||||
|
|
||||||
result_images: List = processed.images
|
|
||||||
# result_info: List = processed.infotexts
|
|
||||||
|
|
||||||
if self.swap_in_generated:
|
|
||||||
|
|
||||||
logger.status("Working: source face index %s, target face index %s", self.source_faces_index, self.faces_index)
|
|
||||||
|
|
||||||
if self.source is not None:
|
|
||||||
# self.source_folder = None
|
|
||||||
self.source_imgs = None
|
|
||||||
|
|
||||||
for i,(img,info) in enumerate(zip(orig_images, orig_infotexts)):
|
|
||||||
if check_process_halt():
|
|
||||||
postprocess_run = False
|
|
||||||
break
|
|
||||||
if len(orig_images) > 1:
|
|
||||||
logger.status("Swap in %s", i)
|
|
||||||
result, output, swapped = swap_face(
|
|
||||||
self.source,
|
|
||||||
img,
|
|
||||||
source_faces_index=self.source_faces_index,
|
|
||||||
faces_index=self.faces_index,
|
|
||||||
model=self.model,
|
|
||||||
enhancement_options=self.enhancement_options,
|
|
||||||
gender_source=self.gender_source,
|
|
||||||
gender_target=self.gender_target,
|
|
||||||
source_hash_check=self.source_hash_check,
|
|
||||||
target_hash_check=self.target_hash_check,
|
|
||||||
device=self.device,
|
|
||||||
mask_face=self.mask_face,
|
|
||||||
select_source=self.select_source,
|
|
||||||
face_model = self.face_model,
|
|
||||||
source_folder = self.source_folder,
|
|
||||||
source_imgs = self.source_imgs,
|
|
||||||
random_image = self.random_image,
|
|
||||||
detection_options=self.detection_options,
|
|
||||||
)
|
|
||||||
|
|
||||||
if self.select_source == 2 or (self.select_source == 0 and self.source_imgs is not None and self.source is None):
|
|
||||||
if len(result) > 0 and swapped > 0:
|
|
||||||
# result_images.extend(result)
|
|
||||||
if self.save_original:
|
|
||||||
result_images.extend(result)
|
|
||||||
else:
|
|
||||||
result_images = result
|
|
||||||
suffix = "-swapped"
|
|
||||||
for i,x in enumerate(result):
|
|
||||||
try:
|
|
||||||
img_path = save_image(result[i], p.outpath_samples, "", p.all_seeds[0], p.all_prompts[0], "png", info=info, p=p, suffix=suffix)
|
|
||||||
except:
|
|
||||||
logger.error("Cannot save a result image - please, check SD WebUI Settings (Saving and Paths)")
|
|
||||||
|
|
||||||
elif len(result) == 0:
|
|
||||||
logger.error("Cannot create a result image")
|
|
||||||
|
|
||||||
else:
|
|
||||||
if result is not None and swapped > 0:
|
|
||||||
result_images.append(result)
|
|
||||||
suffix = "-swapped"
|
|
||||||
try:
|
|
||||||
img_path = save_image(result, p.outpath_samples, "", p.all_seeds[0], p.all_prompts[0], "png", info=info, p=p, suffix=suffix)
|
|
||||||
except:
|
|
||||||
logger.error("Cannot save a result image - please, check SD WebUI Settings (Saving and Paths)")
|
|
||||||
elif result is None:
|
|
||||||
logger.error("Cannot create a result image")
|
|
||||||
|
|
||||||
# if len(output) != 0:
|
|
||||||
# split_fullfn = os.path.splitext(img_path[0])
|
|
||||||
# fullfn = split_fullfn[0] + ".txt"
|
|
||||||
# with open(fullfn, 'w', encoding="utf8") as f:
|
|
||||||
# f.writelines(output)
|
|
||||||
|
|
||||||
if shared.opts.return_grid and len(result_images) > 2 and postprocess_run:
|
|
||||||
grid = make_grid(result_images)
|
|
||||||
result_images.insert(0, grid)
|
|
||||||
try:
|
|
||||||
save_image(grid, p.outpath_grids, "grid", p.all_seeds[0], p.all_prompts[0], shared.opts.grid_format, info=info, short_filename=not shared.opts.grid_extended_filename, p=p, grid=True)
|
|
||||||
except:
|
|
||||||
logger.error("Cannot save a grid - please, check SD WebUI Settings (Saving and Paths)")
|
|
||||||
|
|
||||||
processed.images = result_images
|
|
||||||
# processed.infotexts = result_info
|
|
||||||
|
|
||||||
elif self.select_source == 0 and self.source is not None and self.source_imgs is not None:
|
|
||||||
|
|
||||||
logger.debug("*** Check postprocess - after ELIF")
|
|
||||||
|
|
||||||
if self.result is not None:
|
|
||||||
orig_infotexts : List[str] = processed.infotexts[processed.index_of_first_image:]
|
|
||||||
processed.images = [self.result]
|
|
||||||
try:
|
|
||||||
img_path = save_image(self.result, p.outpath_samples, "", p.all_seeds[0], p.all_prompts[0], "png", info=orig_infotexts[0], p=p, suffix="")
|
|
||||||
except:
|
|
||||||
logger.error("Cannot save a result image - please, check SD WebUI Settings (Saving and Paths)")
|
|
||||||
else:
|
|
||||||
logger.error("Cannot create a result image")
|
|
||||||
|
|
||||||
|
|
||||||
def postprocess_batch(self, p, *args, **kwargs):
|
|
||||||
if self.enable and not self.save_original:
|
|
||||||
logger.debug("*** Check postprocess_batch")
|
|
||||||
images = kwargs["images"]
|
|
||||||
|
|
||||||
def postprocess_image(self, p, script_pp: scripts.PostprocessImageArgs, *args):
|
|
||||||
if self.enable and self.swap_in_generated and not self.save_original and ((self.select_source == 0 and self.source is not None) or self.select_source == 1):
|
|
||||||
|
|
||||||
logger.debug("*** Check postprocess_image")
|
|
||||||
|
|
||||||
current_job_number = shared.state.job_no + 1
|
|
||||||
job_count = shared.state.job_count
|
|
||||||
if current_job_number == job_count:
|
|
||||||
reset_messaged()
|
|
||||||
if check_process_halt():
|
|
||||||
return
|
|
||||||
|
|
||||||
# if (self.source is not None and self.select_source == 0) or ((self.face_model is not None and self.face_model != "None") and self.select_source == 1):
|
|
||||||
logger.status("Working: source face index %s, target face index %s", self.source_faces_index, self.faces_index)
|
|
||||||
image: Image.Image = script_pp.image
|
|
||||||
result, output, swapped = swap_face(
|
|
||||||
self.source,
|
|
||||||
image,
|
|
||||||
source_faces_index=self.source_faces_index,
|
|
||||||
faces_index=self.faces_index,
|
|
||||||
model=self.model,
|
|
||||||
enhancement_options=self.enhancement_options,
|
|
||||||
gender_source=self.gender_source,
|
|
||||||
gender_target=self.gender_target,
|
|
||||||
source_hash_check=self.source_hash_check,
|
|
||||||
target_hash_check=self.target_hash_check,
|
|
||||||
device=self.device,
|
|
||||||
mask_face=self.mask_face,
|
|
||||||
select_source=self.select_source,
|
|
||||||
face_model = self.face_model,
|
|
||||||
source_folder = None,
|
|
||||||
source_imgs = None,
|
|
||||||
random_image = False,
|
|
||||||
detection_options=self.detection_options,
|
|
||||||
)
|
|
||||||
self.result = result
|
|
||||||
try:
|
|
||||||
pp = scripts_postprocessing.PostprocessedImage(result)
|
|
||||||
pp.info = {}
|
|
||||||
p.extra_generation_params.update(pp.info)
|
|
||||||
script_pp.image = pp.image
|
|
||||||
|
|
||||||
# if len(output) != 0:
|
|
||||||
# result_path = get_image_path(script_pp.image, p.outpath_samples, "", p.all_seeds[0], p.all_prompts[0], "txt", p=p, suffix="-swapped")
|
|
||||||
# if len(output) != 0:
|
|
||||||
# with open(result_path, 'w', encoding="utf8") as f:
|
|
||||||
# f.writelines(output)
|
|
||||||
except:
|
|
||||||
logger.error("Cannot create a result image")
|
|
||||||
|
|
||||||
|
|
||||||
class FaceSwapScriptExtras(scripts_postprocessing.ScriptPostprocessing):
|
|
||||||
name = 'ReActor'
|
|
||||||
order = 20000
|
|
||||||
|
|
||||||
def ui(self):
|
|
||||||
with (
|
|
||||||
gr.Accordion(f"{app_title}", open=False) if check_old_webui() else InputAccordion(False, label=f"{app_title}") as enable
|
|
||||||
):
|
|
||||||
# with ui_components.InputAccordion(False, label=f"{app_title}") as enable:
|
|
||||||
# with gr.Accordion(f"{app_title}", open=False):
|
|
||||||
|
|
||||||
# SD.Next or A1111 1.52:
|
|
||||||
if get_SDNEXT() or check_old_webui():
|
|
||||||
enable = gr.Checkbox(False, label="Enable")
|
|
||||||
|
|
||||||
# enable = gr.Checkbox(False, label="Enable", info=f"The Fast and Simple FaceSwap Extension - {version_flag}")
|
|
||||||
gr.Markdown(f"<span style='display:block;font-size:0.75em;margin-bottom:-24px;'>The Fast and Simple FaceSwap Extension - {version_flag}</span>")
|
|
||||||
|
|
||||||
# TAB MAIN
|
|
||||||
msgs: dict = {
|
|
||||||
"extra_multiple_source": "",
|
|
||||||
}
|
|
||||||
img, imgs, selected_tab, select_source, face_model, source_folder, save_original, mask_face, source_faces_index, gender_source, faces_index, gender_target, face_restorer_name, face_restorer_visibility, codeformer_weight, swap_in_source, swap_in_generated, random_image = ui_main.show(is_img2img=False, show_br=False, **msgs)
|
|
||||||
|
|
||||||
# TAB DETECTION
|
|
||||||
det_thresh, det_maxnum = ui_detection.show()
|
|
||||||
|
|
||||||
# TAB UPSCALE
|
|
||||||
restore_first, upscaler_name, upscaler_scale, upscaler_visibility, upscale_force = ui_upscale.show(show_br=False)
|
|
||||||
|
|
||||||
# TAB TOOLS
|
|
||||||
ui_tools.show()
|
|
||||||
|
|
||||||
# TAB SETTINGS
|
|
||||||
model, device, console_logging_level, source_hash_check, target_hash_check = ui_settings.show(hash_check_block=False)
|
|
||||||
|
|
||||||
gr.Markdown("<span style='display:block;text-align:right;padding-right:3px;font-size:0.666em;margin: -9px 0'>by <a style='font-weight:normal' href='https://github.com/Gourieff' target='_blank'>Eugene Gourieff</a></span>")
|
|
||||||
|
|
||||||
args = {
|
|
||||||
'img': img,
|
|
||||||
'enable': enable,
|
|
||||||
'source_faces_index': source_faces_index,
|
|
||||||
'faces_index': faces_index,
|
|
||||||
'model': model,
|
|
||||||
'face_restorer_name': face_restorer_name,
|
|
||||||
'face_restorer_visibility': face_restorer_visibility,
|
|
||||||
'restore_first': restore_first,
|
|
||||||
'upscaler_name': upscaler_name,
|
|
||||||
'upscaler_scale': upscaler_scale,
|
|
||||||
'upscaler_visibility': upscaler_visibility,
|
|
||||||
'console_logging_level': console_logging_level,
|
|
||||||
'gender_source': gender_source,
|
|
||||||
'gender_target': gender_target,
|
|
||||||
'codeformer_weight': codeformer_weight,
|
|
||||||
'device': device,
|
|
||||||
'mask_face': mask_face,
|
|
||||||
'select_source': select_source,
|
|
||||||
'face_model': face_model,
|
|
||||||
'source_folder': source_folder,
|
|
||||||
'imgs': imgs,
|
|
||||||
'random_image': random_image,
|
|
||||||
'upscale_force': upscale_force,
|
|
||||||
'det_thresh': det_thresh,
|
|
||||||
'det_maxnum': det_maxnum,
|
|
||||||
'selected_tab': selected_tab,
|
|
||||||
}
|
|
||||||
return args
|
|
||||||
|
|
||||||
@property
|
|
||||||
def upscaler(self) -> UpscalerData:
|
|
||||||
for upscaler in shared.sd_upscalers:
|
|
||||||
if upscaler.name == self.upscaler_name:
|
|
||||||
return upscaler
|
|
||||||
return None
|
|
||||||
|
|
||||||
@property
|
|
||||||
def face_restorer(self) -> FaceRestoration:
|
|
||||||
for face_restorer in shared.face_restorers:
|
|
||||||
if face_restorer.name() == self.face_restorer_name:
|
|
||||||
return face_restorer
|
|
||||||
return None
|
|
||||||
|
|
||||||
@property
|
|
||||||
def enhancement_options(self) -> EnhancementOptions:
|
|
||||||
return EnhancementOptions(
|
|
||||||
do_restore_first=self.restore_first,
|
|
||||||
scale=self.upscaler_scale,
|
|
||||||
upscaler=self.upscaler,
|
|
||||||
face_restorer=self.face_restorer,
|
|
||||||
upscale_visibility=self.upscaler_visibility,
|
|
||||||
restorer_visibility=self.face_restorer_visibility,
|
|
||||||
codeformer_weight=self.codeformer_weight,
|
|
||||||
upscale_force=self.upscale_force,
|
|
||||||
)
|
|
||||||
|
|
||||||
@property
|
|
||||||
def detection_options(self) -> DetectionOptions:
|
|
||||||
return DetectionOptions(
|
|
||||||
det_thresh=self.det_thresh,
|
|
||||||
det_maxnum=self.det_maxnum
|
|
||||||
)
|
|
||||||
|
|
||||||
def process(self, pp: scripts_postprocessing.PostprocessedImage, **args):
|
|
||||||
if args['enable']:
|
|
||||||
reset_messaged()
|
|
||||||
if check_process_halt():
|
|
||||||
return
|
|
||||||
|
|
||||||
global SWAPPER_MODELS_PATH
|
|
||||||
if args['selected_tab'] == "tab_single":
|
|
||||||
self.source = args['img']
|
|
||||||
else:
|
|
||||||
self.source = None
|
|
||||||
self.face_restorer_name = args['face_restorer_name']
|
|
||||||
self.upscaler_scale = args['upscaler_scale']
|
|
||||||
self.upscaler_visibility = args['upscaler_visibility']
|
|
||||||
self.face_restorer_visibility = args['face_restorer_visibility']
|
|
||||||
self.restore_first = args['restore_first']
|
|
||||||
self.upscaler_name = args['upscaler_name']
|
|
||||||
self.model = os.path.join(SWAPPER_MODELS_PATH, args['model'])
|
|
||||||
self.console_logging_level = args['console_logging_level']
|
|
||||||
self.gender_source = args['gender_source']
|
|
||||||
self.gender_target = args['gender_target']
|
|
||||||
self.codeformer_weight = args['codeformer_weight']
|
|
||||||
self.device = args['device']
|
|
||||||
self.mask_face = args['mask_face']
|
|
||||||
self.select_source = args['select_source']
|
|
||||||
self.face_model = args['face_model']
|
|
||||||
self.source_folder = args['source_folder']
|
|
||||||
if args['selected_tab'] == "tab_single":
|
|
||||||
self.source_imgs = None
|
|
||||||
else:
|
|
||||||
self.source_imgs = args['imgs']
|
|
||||||
self.random_image = args['random_image']
|
|
||||||
self.upscale_force = args['upscale_force']
|
|
||||||
self.det_thresh = args['det_thresh']
|
|
||||||
self.det_maxnum = args['det_maxnum']
|
|
||||||
if self.gender_source is None or self.gender_source == "No":
|
|
||||||
self.gender_source = 0
|
|
||||||
if self.gender_target is None or self.gender_target == "No":
|
|
||||||
self.gender_target = 0
|
|
||||||
self.source_faces_index = [
|
|
||||||
int(x) for x in args['source_faces_index'].strip(",").split(",") if x.isnumeric()
|
|
||||||
]
|
|
||||||
self.faces_index = [
|
|
||||||
int(x) for x in args['faces_index'].strip(",").split(",") if x.isnumeric()
|
|
||||||
]
|
|
||||||
if len(self.source_faces_index) == 0:
|
|
||||||
self.source_faces_index = [0]
|
|
||||||
if len(self.faces_index) == 0:
|
|
||||||
self.faces_index = [0]
|
|
||||||
if self.mask_face is None:
|
|
||||||
self.mask_face = False
|
|
||||||
if self.random_image is None:
|
|
||||||
self.random_image = False
|
|
||||||
if self.upscale_force is None:
|
|
||||||
self.upscale_force = False
|
|
||||||
|
|
||||||
current_job_number = shared.state.job_no + 1
|
|
||||||
job_count = shared.state.job_count
|
|
||||||
if current_job_number == job_count:
|
|
||||||
reset_messaged()
|
|
||||||
|
|
||||||
set_Device(self.device)
|
|
||||||
|
|
||||||
logger.debug("We're here: process() 1")
|
|
||||||
|
|
||||||
if (self.source is not None and self.select_source == 0) or ((self.face_model is not None and self.face_model != "None") and self.select_source == 1) or ((self.source_folder is not None and self.source_folder != "") and self.select_source == 2) or ((self.source_imgs is not None and self.source is None) and self.select_source == 0):
|
|
||||||
|
|
||||||
logger.debug("We're here: process() 2")
|
|
||||||
|
|
||||||
if self.source is not None and self.select_source == 0:
|
|
||||||
self.source_imgs = None
|
|
||||||
|
|
||||||
apply_logging_patch(self.console_logging_level)
|
|
||||||
logger.status("Working: source face index %s, target face index %s", self.source_faces_index, self.faces_index)
|
|
||||||
# if self.select_source != 2:
|
|
||||||
image: Image.Image = pp.image
|
|
||||||
|
|
||||||
# Extract alpha channel
|
|
||||||
logger.debug(f"image = {image}")
|
|
||||||
if image.mode == 'RGBA':
|
|
||||||
_, _, _, alpha = image.split()
|
|
||||||
else:
|
|
||||||
alpha = None
|
|
||||||
logger.debug(f"alpha = {alpha}")
|
|
||||||
|
|
||||||
result, output, swapped = swap_face(
|
|
||||||
self.source,
|
|
||||||
image,
|
|
||||||
source_faces_index=self.source_faces_index,
|
|
||||||
faces_index=self.faces_index,
|
|
||||||
model=self.model,
|
|
||||||
enhancement_options=self.enhancement_options,
|
|
||||||
gender_source=self.gender_source,
|
|
||||||
gender_target=self.gender_target,
|
|
||||||
source_hash_check=True,
|
|
||||||
target_hash_check=True,
|
|
||||||
device=self.device,
|
|
||||||
mask_face=self.mask_face,
|
|
||||||
select_source=self.select_source,
|
|
||||||
face_model=self.face_model,
|
|
||||||
source_folder=self.source_folder,
|
|
||||||
source_imgs=self.source_imgs,
|
|
||||||
random_image=self.random_image,
|
|
||||||
detection_options=self.detection_options,
|
|
||||||
)
|
|
||||||
if self.select_source == 2 or (self.select_source == 0 and self.source_imgs is not None and self.source is None):
|
|
||||||
if len(result) > 0 and swapped > 0:
|
|
||||||
image = result[0]
|
|
||||||
if len(result) > 1:
|
|
||||||
if hasattr(pp, 'extra_images'):
|
|
||||||
image = result[0]
|
|
||||||
pp.extra_images.extend(result[1:])
|
|
||||||
else:
|
|
||||||
grid = make_grid(result)
|
|
||||||
result.insert(0, grid)
|
|
||||||
image = grid
|
|
||||||
pp.info["ReActor"] = True
|
|
||||||
pp.image = image
|
|
||||||
logger.status("---Done!---")
|
|
||||||
else:
|
|
||||||
logger.error("Cannot create a result image")
|
|
||||||
else:
|
|
||||||
try:
|
|
||||||
pp.info["ReActor"] = True
|
|
||||||
|
|
||||||
if alpha is not None:
|
|
||||||
logger.debug(f"result = {result}")
|
|
||||||
result = result.convert("RGBA")
|
|
||||||
result.putalpha(alpha)
|
|
||||||
logger.debug(f"result_alpha = {result}")
|
|
||||||
|
|
||||||
pp.image = result
|
|
||||||
logger.status("---Done!---")
|
|
||||||
except Exception:
|
|
||||||
logger.error("Cannot create a result image")
|
|
||||||
else:
|
|
||||||
logger.error("Please provide a source face")
|
|
||||||
@ -1,42 +0,0 @@
|
|||||||
import os
|
|
||||||
from pathlib import Path
|
|
||||||
|
|
||||||
try:
|
|
||||||
from modules.paths_internal import models_path
|
|
||||||
except:
|
|
||||||
try:
|
|
||||||
from modules.paths import models_path
|
|
||||||
except:
|
|
||||||
models_path = os.path.abspath("models")
|
|
||||||
|
|
||||||
IS_RUN: bool = False
|
|
||||||
BASE_PATH = os.path.join(Path(__file__).parents[1])
|
|
||||||
DEVICE_LIST: list = ["CPU", "CUDA"]
|
|
||||||
|
|
||||||
MODELS_PATH = models_path
|
|
||||||
SWAPPER_MODELS_PATH = os.path.join(MODELS_PATH, "insightface")
|
|
||||||
REACTOR_MODELS_PATH = os.path.join(MODELS_PATH, "reactor")
|
|
||||||
FACE_MODELS_PATH = os.path.join(REACTOR_MODELS_PATH, "faces")
|
|
||||||
|
|
||||||
IS_SDNEXT = False
|
|
||||||
|
|
||||||
if not os.path.exists(REACTOR_MODELS_PATH):
|
|
||||||
os.makedirs(REACTOR_MODELS_PATH)
|
|
||||||
if not os.path.exists(FACE_MODELS_PATH):
|
|
||||||
os.makedirs(FACE_MODELS_PATH)
|
|
||||||
|
|
||||||
def updateDevice():
|
|
||||||
try:
|
|
||||||
LAST_DEVICE_PATH = os.path.join(BASE_PATH, "last_device.txt")
|
|
||||||
with open(LAST_DEVICE_PATH) as f:
|
|
||||||
device = f.readline().strip()
|
|
||||||
if device not in DEVICE_LIST:
|
|
||||||
print(f"Error: Device {device} is not in DEVICE_LIST")
|
|
||||||
device = DEVICE_LIST[0]
|
|
||||||
print(f"Execution Provider has been set to {device}")
|
|
||||||
except Exception as e:
|
|
||||||
device = DEVICE_LIST[0]
|
|
||||||
print(f"Error: {e}\nExecution Provider has been set to {device}")
|
|
||||||
return device
|
|
||||||
|
|
||||||
DEVICE = updateDevice()
|
|
||||||
@ -1,238 +0,0 @@
|
|||||||
import os, glob, random
|
|
||||||
from collections import Counter
|
|
||||||
from PIL import Image
|
|
||||||
from math import isqrt, ceil
|
|
||||||
from typing import List
|
|
||||||
import logging
|
|
||||||
import hashlib
|
|
||||||
import torch
|
|
||||||
from safetensors.torch import save_file, safe_open
|
|
||||||
from insightface.app.common import Face
|
|
||||||
|
|
||||||
from modules.images import FilenameGenerator, get_next_sequence_number
|
|
||||||
from modules import shared, script_callbacks
|
|
||||||
from scripts.reactor_globals import DEVICE, BASE_PATH, FACE_MODELS_PATH, IS_SDNEXT
|
|
||||||
|
|
||||||
try:
|
|
||||||
from modules.paths_internal import models_path
|
|
||||||
except:
|
|
||||||
try:
|
|
||||||
from modules.paths import models_path
|
|
||||||
except:
|
|
||||||
model_path = os.path.abspath("models")
|
|
||||||
|
|
||||||
MODELS_PATH = None
|
|
||||||
|
|
||||||
def set_Device(value):
|
|
||||||
global DEVICE
|
|
||||||
DEVICE = value
|
|
||||||
with open(os.path.join(BASE_PATH, "last_device.txt"), "w") as txt:
|
|
||||||
txt.write(DEVICE)
|
|
||||||
|
|
||||||
def get_Device():
|
|
||||||
global DEVICE
|
|
||||||
return DEVICE
|
|
||||||
|
|
||||||
def set_SDNEXT():
|
|
||||||
global IS_SDNEXT
|
|
||||||
IS_SDNEXT = True
|
|
||||||
|
|
||||||
def get_SDNEXT():
|
|
||||||
global IS_SDNEXT
|
|
||||||
return IS_SDNEXT
|
|
||||||
|
|
||||||
def make_grid(image_list: List):
|
|
||||||
|
|
||||||
# Count the occurrences of each image size in the image_list
|
|
||||||
size_counter = Counter(image.size for image in image_list)
|
|
||||||
|
|
||||||
# Get the most common image size (size with the highest count)
|
|
||||||
common_size = size_counter.most_common(1)[0][0]
|
|
||||||
|
|
||||||
# Filter the image_list to include only images with the common size
|
|
||||||
image_list = [image for image in image_list if image.size == common_size]
|
|
||||||
|
|
||||||
# Get the dimensions (width and height) of the common size
|
|
||||||
size = common_size
|
|
||||||
|
|
||||||
# If there are more than one image in the image_list
|
|
||||||
if len(image_list) > 1:
|
|
||||||
num_images = len(image_list)
|
|
||||||
|
|
||||||
# Calculate the number of rows and columns for the grid
|
|
||||||
rows = isqrt(num_images)
|
|
||||||
cols = ceil(num_images / rows)
|
|
||||||
|
|
||||||
# Calculate the size of the square image
|
|
||||||
square_size = (cols * size[0], rows * size[1])
|
|
||||||
|
|
||||||
# Create a new RGB image with the square size
|
|
||||||
square_image = Image.new("RGB", square_size)
|
|
||||||
|
|
||||||
# Paste each image onto the square image at the appropriate position
|
|
||||||
for i, image in enumerate(image_list):
|
|
||||||
row = i // cols
|
|
||||||
col = i % cols
|
|
||||||
|
|
||||||
square_image.paste(image, (col * size[0], row * size[1]))
|
|
||||||
|
|
||||||
# Return the resulting square image
|
|
||||||
return square_image
|
|
||||||
|
|
||||||
# Return None if there are no images or only one image in the image_list
|
|
||||||
return None
|
|
||||||
|
|
||||||
def get_image_path(image, path, basename, seed=None, prompt=None, extension='png', p=None, suffix=""):
|
|
||||||
|
|
||||||
namegen = FilenameGenerator(p, seed, prompt, image)
|
|
||||||
|
|
||||||
save_to_dirs = shared.opts.save_to_dirs
|
|
||||||
|
|
||||||
if save_to_dirs:
|
|
||||||
dirname = namegen.apply(shared.opts.directories_filename_pattern or "[prompt_words]").lstrip(' ').rstrip('\\ /')
|
|
||||||
path = os.path.join(path, dirname)
|
|
||||||
|
|
||||||
os.makedirs(path, exist_ok=True)
|
|
||||||
|
|
||||||
if seed is None:
|
|
||||||
file_decoration = ""
|
|
||||||
elif shared.opts.save_to_dirs:
|
|
||||||
file_decoration = shared.opts.samples_filename_pattern or "[seed]"
|
|
||||||
else:
|
|
||||||
file_decoration = shared.opts.samples_filename_pattern or "[seed]-[prompt_spaces]"
|
|
||||||
|
|
||||||
file_decoration = namegen.apply(file_decoration) + suffix
|
|
||||||
|
|
||||||
add_number = shared.opts.save_images_add_number or file_decoration == ''
|
|
||||||
|
|
||||||
if file_decoration != "" and add_number:
|
|
||||||
file_decoration = f"-{file_decoration}"
|
|
||||||
|
|
||||||
if add_number:
|
|
||||||
basecount = get_next_sequence_number(path, basename)
|
|
||||||
fullfn = None
|
|
||||||
for i in range(500):
|
|
||||||
fn = f"{basecount + i:05}" if basename == '' else f"{basename}-{basecount + i:04}"
|
|
||||||
fullfn = os.path.join(path, f"{fn}{file_decoration}.{extension}")
|
|
||||||
if not os.path.exists(fullfn):
|
|
||||||
break
|
|
||||||
else:
|
|
||||||
fullfn = os.path.join(path, f"{file_decoration}.{extension}")
|
|
||||||
|
|
||||||
pnginfo = {}
|
|
||||||
|
|
||||||
params = script_callbacks.ImageSaveParams(image, p, fullfn, pnginfo)
|
|
||||||
# script_callbacks.before_image_saved_callback(params)
|
|
||||||
|
|
||||||
fullfn = params.filename
|
|
||||||
|
|
||||||
fullfn_without_extension, extension = os.path.splitext(params.filename)
|
|
||||||
if hasattr(os, 'statvfs'):
|
|
||||||
max_name_len = os.statvfs(path).f_namemax
|
|
||||||
fullfn_without_extension = fullfn_without_extension[:max_name_len - max(4, len(extension))]
|
|
||||||
params.filename = fullfn_without_extension + extension
|
|
||||||
fullfn = params.filename
|
|
||||||
|
|
||||||
return fullfn
|
|
||||||
|
|
||||||
def addLoggingLevel(levelName, levelNum, methodName=None):
|
|
||||||
if not methodName:
|
|
||||||
methodName = levelName.lower()
|
|
||||||
|
|
||||||
def logForLevel(self, message, *args, **kwargs):
|
|
||||||
if self.isEnabledFor(levelNum):
|
|
||||||
self._log(levelNum, message, args, **kwargs)
|
|
||||||
|
|
||||||
def logToRoot(message, *args, **kwargs):
|
|
||||||
logging.log(levelNum, message, *args, **kwargs)
|
|
||||||
|
|
||||||
logging.addLevelName(levelNum, levelName)
|
|
||||||
setattr(logging, levelName, levelNum)
|
|
||||||
setattr(logging.getLoggerClass(), methodName, logForLevel)
|
|
||||||
setattr(logging, methodName, logToRoot)
|
|
||||||
|
|
||||||
def get_image_md5hash(image: Image.Image):
|
|
||||||
md5hash = hashlib.md5(image.tobytes())
|
|
||||||
return md5hash.hexdigest()
|
|
||||||
|
|
||||||
def save_face_model(face: Face, filename: str) -> None:
|
|
||||||
try:
|
|
||||||
tensors = {
|
|
||||||
"bbox": torch.tensor(face["bbox"]),
|
|
||||||
"kps": torch.tensor(face["kps"]),
|
|
||||||
"det_score": torch.tensor(face["det_score"]),
|
|
||||||
"landmark_3d_68": torch.tensor(face["landmark_3d_68"]),
|
|
||||||
"pose": torch.tensor(face["pose"]),
|
|
||||||
"landmark_2d_106": torch.tensor(face["landmark_2d_106"]),
|
|
||||||
"embedding": torch.tensor(face["embedding"]),
|
|
||||||
"gender": torch.tensor(face["gender"]),
|
|
||||||
"age": torch.tensor(face["age"]),
|
|
||||||
}
|
|
||||||
save_file(tensors, filename)
|
|
||||||
# print(f"Face model has been saved to '{filename}'")
|
|
||||||
except Exception as e:
|
|
||||||
print(f"Error: {e}")
|
|
||||||
|
|
||||||
def get_models():
|
|
||||||
global MODELS_PATH
|
|
||||||
models_path_init = os.path.join(models_path, "insightface/*")
|
|
||||||
models = glob.glob(models_path_init)
|
|
||||||
models = [x for x in models if x.endswith(".onnx") or x.endswith(".pth")]
|
|
||||||
models_names = []
|
|
||||||
for model in models:
|
|
||||||
model_path = os.path.split(model)
|
|
||||||
if MODELS_PATH is None:
|
|
||||||
MODELS_PATH = model_path[0]
|
|
||||||
model_name = model_path[1]
|
|
||||||
models_names.append(model_name)
|
|
||||||
return models_names
|
|
||||||
|
|
||||||
def load_face_model(filename: str):
|
|
||||||
face = {}
|
|
||||||
model_path = os.path.join(FACE_MODELS_PATH, filename)
|
|
||||||
with safe_open(model_path, framework="pt") as f:
|
|
||||||
for k in f.keys():
|
|
||||||
face[k] = f.get_tensor(k).numpy()
|
|
||||||
return Face(face)
|
|
||||||
|
|
||||||
def get_facemodels():
|
|
||||||
models_path = os.path.join(FACE_MODELS_PATH, "*")
|
|
||||||
models = glob.glob(models_path)
|
|
||||||
models = [x for x in models if x.endswith(".safetensors")]
|
|
||||||
return models
|
|
||||||
|
|
||||||
def get_model_names(get_models):
|
|
||||||
models = get_models()
|
|
||||||
names = []
|
|
||||||
for x in models:
|
|
||||||
names.append(os.path.basename(x))
|
|
||||||
# Sort ignoring case during sort but retain in output
|
|
||||||
names.sort(key=str.lower)
|
|
||||||
names.insert(0, "None")
|
|
||||||
return names
|
|
||||||
|
|
||||||
def get_images_from_folder(path: str):
|
|
||||||
files_path = os.path.join(path, "*")
|
|
||||||
files = glob.glob(files_path)
|
|
||||||
images = []
|
|
||||||
images_names = []
|
|
||||||
for x in files:
|
|
||||||
if x.endswith(('jpg', 'png', 'jpeg', 'webp', 'bmp')):
|
|
||||||
images.append(Image.open(x))
|
|
||||||
images_names.append(os.path.basename(x))
|
|
||||||
return images,images_names
|
|
||||||
# return [Image.open(x) for x in images if x.endswith(('jpg', 'png', 'jpeg', 'webp', 'bmp'))],[os.path.basename(x) for x in images if x.endswith(('jpg', 'png', 'jpeg', 'webp', 'bmp'))]
|
|
||||||
|
|
||||||
def get_random_image_from_folder(path: str):
|
|
||||||
images,names = get_images_from_folder(path)
|
|
||||||
random_image_index = random.randint(0, len(images) - 1)
|
|
||||||
return [images[random_image_index]],[names[random_image_index]]
|
|
||||||
|
|
||||||
def get_images_from_list(imgs: List):
|
|
||||||
images = []
|
|
||||||
images_names = []
|
|
||||||
for x in imgs:
|
|
||||||
images.append(Image.open(os.path.abspath(x.name)))
|
|
||||||
images_names.append(os.path.basename(x.name))
|
|
||||||
return images,images_names
|
|
||||||
# return [Image.open(os.path.abspath(x.name)) for x in imgs],[os.path.basename(x.name) for x in imgs]
|
|
||||||
@ -1,86 +0,0 @@
|
|||||||
from typing import List, Tuple
|
|
||||||
|
|
||||||
import cv2
|
|
||||||
import modules.shared as shared
|
|
||||||
import numpy as np
|
|
||||||
import torch
|
|
||||||
from facexlib.parsing import init_parsing_model
|
|
||||||
from facexlib.utils.misc import img2tensor
|
|
||||||
from torchvision.transforms.functional import normalize
|
|
||||||
from scripts.reactor_inferencers.mask_generator import MaskGenerator
|
|
||||||
|
|
||||||
class BiSeNetMaskGenerator(MaskGenerator):
|
|
||||||
def __init__(self) -> None:
|
|
||||||
self.mask_model = init_parsing_model(device=shared.device)
|
|
||||||
|
|
||||||
def name(self):
|
|
||||||
return "BiSeNet"
|
|
||||||
|
|
||||||
def generate_mask(
|
|
||||||
self,
|
|
||||||
face_image: np.ndarray,
|
|
||||||
face_area_on_image: Tuple[int, int, int, int],
|
|
||||||
affected_areas: List[str],
|
|
||||||
mask_size: int,
|
|
||||||
use_minimal_area: bool,
|
|
||||||
fallback_ratio: float = 0.25,
|
|
||||||
**kwargs,
|
|
||||||
) -> np.ndarray:
|
|
||||||
# original_face_image = face_image
|
|
||||||
face_image = face_image.copy()
|
|
||||||
face_image = face_image[:, :, ::-1]
|
|
||||||
|
|
||||||
if use_minimal_area:
|
|
||||||
face_image = MaskGenerator.mask_non_face_areas(face_image, face_area_on_image)
|
|
||||||
|
|
||||||
h, w, _ = face_image.shape
|
|
||||||
|
|
||||||
if w != 512 or h != 512:
|
|
||||||
rw = (int(w * (512 / w)) // 8) * 8
|
|
||||||
rh = (int(h * (512 / h)) // 8) * 8
|
|
||||||
face_image = cv2.resize(face_image, dsize=(rw, rh))
|
|
||||||
|
|
||||||
face_tensor = img2tensor(face_image.astype("float32") / 255.0, float32=True)
|
|
||||||
normalize(face_tensor, (0.5, 0.5, 0.5), (0.5, 0.5, 0.5), inplace=True)
|
|
||||||
face_tensor = torch.unsqueeze(face_tensor, 0).to(shared.device)
|
|
||||||
|
|
||||||
with torch.no_grad():
|
|
||||||
face = self.mask_model(face_tensor)[0]
|
|
||||||
face = face.squeeze(0).cpu().numpy().argmax(0)
|
|
||||||
face = face.copy().astype(np.uint8)
|
|
||||||
|
|
||||||
mask = self.__to_mask(face, affected_areas)
|
|
||||||
|
|
||||||
if mask_size > 0:
|
|
||||||
mask = cv2.dilate(mask, np.ones((5, 5), np.uint8), iterations=mask_size)
|
|
||||||
|
|
||||||
if w != 512 or h != 512:
|
|
||||||
mask = cv2.resize(mask, dsize=(w, h))
|
|
||||||
|
|
||||||
# """if MaskGenerator.calculate_mask_coverage(mask) < fallback_ratio:
|
|
||||||
# logger.info("Use fallback mask generator")
|
|
||||||
# mask = self.fallback_mask_generator.generate_mask(
|
|
||||||
# original_face_image, face_area_on_image, use_minimal_area=True
|
|
||||||
# )"""
|
|
||||||
|
|
||||||
return mask
|
|
||||||
|
|
||||||
def __to_mask(self, face: np.ndarray, affected_areas: List[str]) -> np.ndarray:
|
|
||||||
keep_face = "Face" in affected_areas
|
|
||||||
keep_neck = "Neck" in affected_areas
|
|
||||||
keep_hair = "Hair" in affected_areas
|
|
||||||
keep_hat = "Hat" in affected_areas
|
|
||||||
|
|
||||||
mask = np.zeros((face.shape[0], face.shape[1], 3), dtype=np.uint8)
|
|
||||||
num_of_class = np.max(face)
|
|
||||||
for i in range(1, num_of_class + 1):
|
|
||||||
index = np.where(face == i)
|
|
||||||
if i < 14 and keep_face:
|
|
||||||
mask[index[0], index[1], :] = [255, 255, 255]
|
|
||||||
elif i == 14 and keep_neck:
|
|
||||||
mask[index[0], index[1], :] = [255, 255, 255]
|
|
||||||
elif i == 17 and keep_hair:
|
|
||||||
mask[index[0], index[1], :] = [255, 255, 255]
|
|
||||||
elif i == 18 and keep_hat:
|
|
||||||
mask[index[0], index[1], :] = [255, 255, 255]
|
|
||||||
return mask
|
|
||||||
@ -1,36 +0,0 @@
|
|||||||
from abc import ABC, abstractmethod
|
|
||||||
from typing import Tuple
|
|
||||||
|
|
||||||
import cv2
|
|
||||||
import numpy as np
|
|
||||||
|
|
||||||
class MaskGenerator(ABC):
|
|
||||||
@abstractmethod
|
|
||||||
def name(self) -> str:
|
|
||||||
pass
|
|
||||||
|
|
||||||
@abstractmethod
|
|
||||||
def generate_mask(
|
|
||||||
self,
|
|
||||||
face_image: np.ndarray,
|
|
||||||
face_area_on_image: Tuple[int, int, int, int],
|
|
||||||
**kwargs,
|
|
||||||
) -> np.ndarray:
|
|
||||||
pass
|
|
||||||
|
|
||||||
@staticmethod
|
|
||||||
def mask_non_face_areas(image: np.ndarray, face_area_on_image: Tuple[int, int, int, int]) -> np.ndarray:
|
|
||||||
left, top, right, bottom = face_area_on_image
|
|
||||||
image = image.copy()
|
|
||||||
image[:top, :] = 0
|
|
||||||
image[bottom:, :] = 0
|
|
||||||
image[:, :left] = 0
|
|
||||||
image[:, right:] = 0
|
|
||||||
return image
|
|
||||||
|
|
||||||
@staticmethod
|
|
||||||
def calculate_mask_coverage(mask: np.ndarray):
|
|
||||||
gray_mask = cv2.cvtColor(mask, cv2.COLOR_RGB2GRAY)
|
|
||||||
non_black_pixels = np.count_nonzero(gray_mask)
|
|
||||||
total_pixels = gray_mask.size
|
|
||||||
return non_black_pixels / total_pixels
|
|
||||||
@ -1,825 +0,0 @@
|
|||||||
import copy
|
|
||||||
import os
|
|
||||||
from dataclasses import dataclass
|
|
||||||
from typing import List, Union
|
|
||||||
|
|
||||||
import cv2
|
|
||||||
import numpy as np
|
|
||||||
from PIL import Image
|
|
||||||
from scipy import stats
|
|
||||||
|
|
||||||
import insightface
|
|
||||||
from insightface.app.common import Face
|
|
||||||
|
|
||||||
from scripts.reactor_globals import FACE_MODELS_PATH
|
|
||||||
from scripts.reactor_helpers import (
|
|
||||||
get_image_md5hash,
|
|
||||||
get_Device,
|
|
||||||
save_face_model,
|
|
||||||
load_face_model,
|
|
||||||
get_images_from_folder,
|
|
||||||
get_random_image_from_folder,
|
|
||||||
get_images_from_list,
|
|
||||||
set_SDNEXT
|
|
||||||
)
|
|
||||||
from scripts.console_log_patch import apply_logging_patch
|
|
||||||
|
|
||||||
from modules.face_restoration import FaceRestoration
|
|
||||||
try: # A1111
|
|
||||||
from modules import codeformer_model, gfpgan_model
|
|
||||||
except: # SD.Next
|
|
||||||
from modules.postprocess import codeformer_model, gfpgan_model
|
|
||||||
set_SDNEXT()
|
|
||||||
from modules.upscaler import UpscalerData
|
|
||||||
from modules.shared import state
|
|
||||||
from scripts.reactor_logger import logger
|
|
||||||
from reactor_modules.reactor_mask import apply_face_mask
|
|
||||||
|
|
||||||
try:
|
|
||||||
from modules.paths_internal import models_path
|
|
||||||
except:
|
|
||||||
try:
|
|
||||||
from modules.paths import models_path
|
|
||||||
except:
|
|
||||||
models_path = os.path.abspath("models")
|
|
||||||
|
|
||||||
import warnings
|
|
||||||
|
|
||||||
np.warnings = warnings
|
|
||||||
np.warnings.filterwarnings('ignore')
|
|
||||||
|
|
||||||
|
|
||||||
DEVICE = get_Device()
|
|
||||||
if DEVICE == "CUDA":
|
|
||||||
PROVIDERS = ["CUDAExecutionProvider"]
|
|
||||||
else:
|
|
||||||
PROVIDERS = ["CPUExecutionProvider"]
|
|
||||||
|
|
||||||
|
|
||||||
@dataclass
|
|
||||||
class EnhancementOptions:
|
|
||||||
do_restore_first: bool = True
|
|
||||||
scale: int = 1
|
|
||||||
upscaler: UpscalerData = None
|
|
||||||
upscale_visibility: float = 0.5
|
|
||||||
face_restorer: FaceRestoration = None
|
|
||||||
restorer_visibility: float = 0.5
|
|
||||||
codeformer_weight: float = 0.5
|
|
||||||
upscale_force: bool = False
|
|
||||||
|
|
||||||
@dataclass
|
|
||||||
class DetectionOptions:
|
|
||||||
det_thresh: float = 0.5
|
|
||||||
det_maxnum: int = 0
|
|
||||||
|
|
||||||
MESSAGED_STOPPED = False
|
|
||||||
MESSAGED_SKIPPED = False
|
|
||||||
|
|
||||||
def reset_messaged():
|
|
||||||
global MESSAGED_STOPPED, MESSAGED_SKIPPED
|
|
||||||
if not state.interrupted:
|
|
||||||
MESSAGED_STOPPED = False
|
|
||||||
if not state.skipped:
|
|
||||||
MESSAGED_SKIPPED = False
|
|
||||||
|
|
||||||
def check_process_halt(msgforced: bool = False):
|
|
||||||
global MESSAGED_STOPPED, MESSAGED_SKIPPED
|
|
||||||
if state.interrupted:
|
|
||||||
if not MESSAGED_STOPPED or msgforced:
|
|
||||||
logger.status("Stopped by User")
|
|
||||||
MESSAGED_STOPPED = True
|
|
||||||
return True
|
|
||||||
if state.skipped:
|
|
||||||
if not MESSAGED_SKIPPED or msgforced:
|
|
||||||
logger.status("Skipped by User")
|
|
||||||
MESSAGED_SKIPPED = True
|
|
||||||
return True
|
|
||||||
return False
|
|
||||||
|
|
||||||
|
|
||||||
FS_MODEL = None
|
|
||||||
ANALYSIS_MODEL = None
|
|
||||||
MASK_MODEL = None
|
|
||||||
|
|
||||||
CURRENT_FS_MODEL_PATH = None
|
|
||||||
CURRENT_MASK_MODEL_PATH = None
|
|
||||||
|
|
||||||
SOURCE_FACES = None
|
|
||||||
SOURCE_IMAGE_HASH = None
|
|
||||||
TARGET_FACES = None
|
|
||||||
TARGET_IMAGE_HASH = None
|
|
||||||
SOURCE_FACES_LIST = []
|
|
||||||
SOURCE_IMAGE_LIST_HASH = []
|
|
||||||
|
|
||||||
def clear_faces():
|
|
||||||
global SOURCE_FACES, SOURCE_IMAGE_HASH
|
|
||||||
SOURCE_FACES = None
|
|
||||||
SOURCE_IMAGE_HASH = None
|
|
||||||
logger.status("Source Images Hash has been reset (for Single Source or Face Model)")
|
|
||||||
|
|
||||||
def clear_faces_list():
|
|
||||||
global SOURCE_FACES_LIST, SOURCE_IMAGE_LIST_HASH
|
|
||||||
SOURCE_FACES_LIST = []
|
|
||||||
SOURCE_IMAGE_LIST_HASH = []
|
|
||||||
logger.status("Source Images Hash has been reset (for Multiple or Folder Source)")
|
|
||||||
|
|
||||||
def clear_faces_target():
|
|
||||||
global TARGET_FACES, TARGET_IMAGE_HASH
|
|
||||||
TARGET_FACES = None
|
|
||||||
TARGET_IMAGE_HASH = None
|
|
||||||
logger.status("Target Images Hash has been reset")
|
|
||||||
|
|
||||||
def clear_faces_all():
|
|
||||||
global SOURCE_FACES, SOURCE_IMAGE_HASH, SOURCE_FACES_LIST, SOURCE_IMAGE_LIST_HASH, TARGET_FACES, TARGET_IMAGE_HASH
|
|
||||||
SOURCE_FACES = None
|
|
||||||
SOURCE_IMAGE_HASH = None
|
|
||||||
TARGET_FACES = None
|
|
||||||
TARGET_IMAGE_HASH = None
|
|
||||||
SOURCE_FACES_LIST = []
|
|
||||||
SOURCE_IMAGE_LIST_HASH = []
|
|
||||||
logger.status("All Images Hash has been reset")
|
|
||||||
|
|
||||||
def getAnalysisModel():
|
|
||||||
global ANALYSIS_MODEL
|
|
||||||
if ANALYSIS_MODEL is None:
|
|
||||||
ANALYSIS_MODEL = insightface.app.FaceAnalysis(
|
|
||||||
name="buffalo_l", providers=PROVIDERS, root=os.path.join(models_path, "insightface") # note: allowed_modules=['detection', 'genderage']
|
|
||||||
)
|
|
||||||
return ANALYSIS_MODEL
|
|
||||||
|
|
||||||
|
|
||||||
def getFaceSwapModel(model_path: str):
|
|
||||||
global FS_MODEL
|
|
||||||
global CURRENT_FS_MODEL_PATH
|
|
||||||
if CURRENT_FS_MODEL_PATH is None or CURRENT_FS_MODEL_PATH != model_path:
|
|
||||||
CURRENT_FS_MODEL_PATH = model_path
|
|
||||||
FS_MODEL = insightface.model_zoo.get_model(model_path, providers=PROVIDERS)
|
|
||||||
|
|
||||||
return FS_MODEL
|
|
||||||
|
|
||||||
|
|
||||||
def restore_face(image: Image, enhancement_options: EnhancementOptions):
|
|
||||||
result_image = image
|
|
||||||
|
|
||||||
if check_process_halt(msgforced=True):
|
|
||||||
return result_image
|
|
||||||
|
|
||||||
if enhancement_options.face_restorer is not None:
|
|
||||||
original_image = result_image.copy()
|
|
||||||
numpy_image = np.array(result_image)
|
|
||||||
if enhancement_options.face_restorer.name() == "CodeFormer":
|
|
||||||
logger.status("Restoring the face with %s (weight: %s)", enhancement_options.face_restorer.name(), enhancement_options.codeformer_weight)
|
|
||||||
numpy_image = codeformer_model.codeformer.restore(
|
|
||||||
numpy_image, w=enhancement_options.codeformer_weight
|
|
||||||
)
|
|
||||||
else: # GFPGAN:
|
|
||||||
logger.status("Restoring the face with %s", enhancement_options.face_restorer.name())
|
|
||||||
numpy_image = gfpgan_model.gfpgan_fix_faces(numpy_image)
|
|
||||||
# numpy_image = enhancement_options.face_restorer.restore(numpy_image)
|
|
||||||
restored_image = Image.fromarray(numpy_image)
|
|
||||||
result_image = Image.blend(
|
|
||||||
original_image, restored_image, enhancement_options.restorer_visibility
|
|
||||||
)
|
|
||||||
|
|
||||||
return result_image
|
|
||||||
|
|
||||||
def upscale_image(image: Image, enhancement_options: EnhancementOptions):
|
|
||||||
result_image = image
|
|
||||||
|
|
||||||
if check_process_halt(msgforced=True):
|
|
||||||
return result_image
|
|
||||||
|
|
||||||
if enhancement_options.upscaler is not None and enhancement_options.upscaler.name != "None":
|
|
||||||
original_image = result_image.copy()
|
|
||||||
logger.status(
|
|
||||||
"Upscaling with %s scale = %s",
|
|
||||||
enhancement_options.upscaler.name,
|
|
||||||
enhancement_options.scale,
|
|
||||||
)
|
|
||||||
result_image = enhancement_options.upscaler.scaler.upscale(
|
|
||||||
original_image, enhancement_options.scale, enhancement_options.upscaler.data_path
|
|
||||||
)
|
|
||||||
if enhancement_options.scale == 1:
|
|
||||||
result_image = Image.blend(
|
|
||||||
original_image, result_image, enhancement_options.upscale_visibility
|
|
||||||
)
|
|
||||||
|
|
||||||
return result_image
|
|
||||||
|
|
||||||
def enhance_image(image: Image, enhancement_options: EnhancementOptions):
|
|
||||||
result_image = image
|
|
||||||
|
|
||||||
if check_process_halt(msgforced=True):
|
|
||||||
return result_image
|
|
||||||
|
|
||||||
if enhancement_options.do_restore_first:
|
|
||||||
|
|
||||||
result_image = restore_face(result_image, enhancement_options)
|
|
||||||
result_image = upscale_image(result_image, enhancement_options)
|
|
||||||
|
|
||||||
else:
|
|
||||||
|
|
||||||
result_image = upscale_image(result_image, enhancement_options)
|
|
||||||
result_image = restore_face(result_image, enhancement_options)
|
|
||||||
|
|
||||||
return result_image
|
|
||||||
|
|
||||||
def enhance_image_and_mask(image: Image.Image, enhancement_options: EnhancementOptions,target_img_orig:Image.Image,entire_mask_image:Image.Image)->Image.Image:
|
|
||||||
result_image = image
|
|
||||||
|
|
||||||
if check_process_halt(msgforced=True):
|
|
||||||
return result_image
|
|
||||||
|
|
||||||
if enhancement_options.do_restore_first:
|
|
||||||
|
|
||||||
result_image = restore_face(result_image, enhancement_options)
|
|
||||||
result_image = Image.composite(result_image,target_img_orig,entire_mask_image)
|
|
||||||
result_image = upscale_image(result_image, enhancement_options)
|
|
||||||
|
|
||||||
else:
|
|
||||||
|
|
||||||
result_image = upscale_image(result_image, enhancement_options)
|
|
||||||
entire_mask_image = Image.fromarray(cv2.resize(np.array(entire_mask_image),result_image.size, interpolation=cv2.INTER_AREA)).convert("L")
|
|
||||||
result_image = Image.composite(result_image,target_img_orig,entire_mask_image)
|
|
||||||
result_image = restore_face(result_image, enhancement_options)
|
|
||||||
|
|
||||||
return result_image
|
|
||||||
|
|
||||||
|
|
||||||
def get_gender(face, face_index):
|
|
||||||
gender = [
|
|
||||||
x.sex
|
|
||||||
for x in face
|
|
||||||
]
|
|
||||||
gender.reverse()
|
|
||||||
try:
|
|
||||||
face_gender = gender[face_index]
|
|
||||||
except:
|
|
||||||
logger.error("Gender Detection: No face with index = %s was found", face_index)
|
|
||||||
return "None"
|
|
||||||
return face_gender
|
|
||||||
|
|
||||||
def get_face_gender(
|
|
||||||
face,
|
|
||||||
face_index,
|
|
||||||
gender_condition,
|
|
||||||
operated: str,
|
|
||||||
gender_detected,
|
|
||||||
):
|
|
||||||
face_gender = gender_detected
|
|
||||||
if face_gender == "None":
|
|
||||||
return None, 0
|
|
||||||
logger.status("%s Face %s: Detected Gender -%s-", operated, face_index, face_gender)
|
|
||||||
if (gender_condition == 1 and face_gender == "F") or (gender_condition == 2 and face_gender == "M"):
|
|
||||||
logger.status("OK - Detected Gender matches Condition")
|
|
||||||
try:
|
|
||||||
return sorted(face, key=lambda x: x.bbox[0])[face_index], 0
|
|
||||||
except IndexError:
|
|
||||||
return None, 0
|
|
||||||
else:
|
|
||||||
logger.status("WRONG - Detected Gender doesn't match Condition")
|
|
||||||
return sorted(face, key=lambda x: x.bbox[0])[face_index], 1
|
|
||||||
|
|
||||||
def get_face_age(face, face_index):
|
|
||||||
age = [
|
|
||||||
x.age
|
|
||||||
for x in face
|
|
||||||
]
|
|
||||||
age.reverse()
|
|
||||||
try:
|
|
||||||
face_age = age[face_index]
|
|
||||||
except:
|
|
||||||
logger.error("Age Detection: No face with index = %s was found", face_index)
|
|
||||||
return "None"
|
|
||||||
return face_age
|
|
||||||
|
|
||||||
def half_det_size(det_size):
|
|
||||||
logger.status("Trying to halve 'det_size' parameter")
|
|
||||||
return (det_size[0] // 2, det_size[1] // 2)
|
|
||||||
|
|
||||||
def analyze_faces(img_data: np.ndarray, det_size=(640, 640), det_thresh=0.5, det_maxnum=0):
|
|
||||||
logger.info("Applied Execution Provider: %s", PROVIDERS[0])
|
|
||||||
face_analyser = copy.deepcopy(getAnalysisModel())
|
|
||||||
face_analyser.prepare(ctx_id=0, det_thresh=det_thresh, det_size=det_size)
|
|
||||||
return face_analyser.get(img_data, max_num=det_maxnum)
|
|
||||||
|
|
||||||
def get_face_single(img_data: np.ndarray, face, face_index=0, det_size=(640, 640), gender_source=0, gender_target=0, det_thresh=0.5, det_maxnum=0):
|
|
||||||
|
|
||||||
buffalo_path = os.path.join(models_path, "insightface/models/buffalo_l.zip")
|
|
||||||
if os.path.exists(buffalo_path):
|
|
||||||
os.remove(buffalo_path)
|
|
||||||
|
|
||||||
face_age = "None"
|
|
||||||
try:
|
|
||||||
face_age = get_face_age(face, face_index)
|
|
||||||
except:
|
|
||||||
logger.error("Cannot detect any Age for Face index = %s", face_index)
|
|
||||||
|
|
||||||
face_gender = "None"
|
|
||||||
try:
|
|
||||||
face_gender = get_gender(face, face_index)
|
|
||||||
gender_detected = face_gender
|
|
||||||
face_gender = "Female" if face_gender == "F" else ("Male" if face_gender == "M" else "None")
|
|
||||||
except:
|
|
||||||
logger.error("Cannot detect any Gender for Face index = %s", face_index)
|
|
||||||
|
|
||||||
if gender_source != 0:
|
|
||||||
if len(face) == 0 and det_size[0] > 320 and det_size[1] > 320:
|
|
||||||
det_size_half = half_det_size(det_size)
|
|
||||||
return get_face_single(img_data, analyze_faces(img_data, det_size_half, det_thresh, det_maxnum), face_index, det_size_half, gender_source, gender_target, det_thresh, det_maxnum)
|
|
||||||
faces, wrong_gender = get_face_gender(face,face_index,gender_source,"Source",gender_detected)
|
|
||||||
return faces, wrong_gender, face_age, face_gender
|
|
||||||
|
|
||||||
if gender_target != 0:
|
|
||||||
if len(face) == 0 and det_size[0] > 320 and det_size[1] > 320:
|
|
||||||
det_size_half = half_det_size(det_size)
|
|
||||||
return get_face_single(img_data, analyze_faces(img_data, det_size_half, det_thresh, det_maxnum), face_index, det_size_half, gender_source, gender_target, det_thresh, det_maxnum)
|
|
||||||
faces, wrong_gender = get_face_gender(face,face_index,gender_target,"Target",gender_detected)
|
|
||||||
return faces, wrong_gender, face_age, face_gender
|
|
||||||
|
|
||||||
if len(face) == 0 and det_size[0] > 320 and det_size[1] > 320:
|
|
||||||
det_size_half = half_det_size(det_size)
|
|
||||||
return get_face_single(img_data, analyze_faces(img_data, det_size_half, det_thresh, det_maxnum), face_index, det_size_half, gender_source, gender_target, det_thresh, det_maxnum)
|
|
||||||
|
|
||||||
try:
|
|
||||||
return sorted(face, key=lambda x: x.bbox[0])[face_index], 0, face_age, face_gender
|
|
||||||
except IndexError:
|
|
||||||
return None, 0, face_age, face_gender
|
|
||||||
|
|
||||||
|
|
||||||
def swap_face(
|
|
||||||
source_img: Image.Image,
|
|
||||||
target_img: Image.Image,
|
|
||||||
model: Union[str, None] = None,
|
|
||||||
source_faces_index: List[int] = [0],
|
|
||||||
faces_index: List[int] = [0],
|
|
||||||
enhancement_options: Union[EnhancementOptions, None] = None,
|
|
||||||
gender_source: int = 0,
|
|
||||||
gender_target: int = 0,
|
|
||||||
source_hash_check: bool = True,
|
|
||||||
target_hash_check: bool = False,
|
|
||||||
device: str = "CPU",
|
|
||||||
mask_face: bool = False,
|
|
||||||
select_source: int = 0,
|
|
||||||
face_model: str = "None",
|
|
||||||
source_folder: str = "",
|
|
||||||
source_imgs: Union[List, None] = None,
|
|
||||||
random_image: bool = False,
|
|
||||||
detection_options: Union[DetectionOptions, None] = None,
|
|
||||||
):
|
|
||||||
global SOURCE_FACES, SOURCE_IMAGE_HASH, TARGET_FACES, TARGET_IMAGE_HASH, PROVIDERS, SOURCE_FACES_LIST, SOURCE_IMAGE_LIST_HASH
|
|
||||||
|
|
||||||
result_image = target_img
|
|
||||||
|
|
||||||
PROVIDERS = ["CUDAExecutionProvider"] if device == "CUDA" else ["CPUExecutionProvider"]
|
|
||||||
|
|
||||||
if check_process_halt():
|
|
||||||
return result_image, [], 0
|
|
||||||
|
|
||||||
if model is not None:
|
|
||||||
|
|
||||||
if isinstance(source_img, str): # source_img is a base64 string
|
|
||||||
import base64, io
|
|
||||||
if 'base64,' in source_img: # check if the base64 string has a data URL scheme
|
|
||||||
# split the base64 string to get the actual base64 encoded image data
|
|
||||||
base64_data = source_img.split('base64,')[-1]
|
|
||||||
# decode base64 string to bytes
|
|
||||||
img_bytes = base64.b64decode(base64_data)
|
|
||||||
else:
|
|
||||||
# if no data URL scheme, just decode
|
|
||||||
img_bytes = base64.b64decode(source_img)
|
|
||||||
|
|
||||||
source_img = Image.open(io.BytesIO(img_bytes))
|
|
||||||
|
|
||||||
target_img = cv2.cvtColor(np.array(target_img), cv2.COLOR_RGB2BGR)
|
|
||||||
|
|
||||||
target_img_orig = cv2.cvtColor(np.array(target_img), cv2.COLOR_RGB2BGR)
|
|
||||||
entire_mask_image = np.zeros_like(np.array(target_img))
|
|
||||||
|
|
||||||
output: List = []
|
|
||||||
output_info: str = ""
|
|
||||||
swapped = 0
|
|
||||||
|
|
||||||
# *****************
|
|
||||||
# SWAP from FOLDER or MULTIPLE images:
|
|
||||||
|
|
||||||
if (select_source == 0 and source_imgs is not None) or (select_source == 2 and (source_folder is not None and source_folder != "")):
|
|
||||||
|
|
||||||
result = []
|
|
||||||
|
|
||||||
if random_image and select_source == 2:
|
|
||||||
source_images,source_images_names = get_random_image_from_folder(source_folder)
|
|
||||||
logger.status(f"Processing with Random Image from the folder: {source_images_names[0]}")
|
|
||||||
else:
|
|
||||||
source_images,source_images_names = get_images_from_folder(source_folder) if select_source == 2 else get_images_from_list(source_imgs)
|
|
||||||
|
|
||||||
if len(source_images) > 0:
|
|
||||||
source_img_ff = []
|
|
||||||
source_faces_ff = []
|
|
||||||
for i, source_image in enumerate(source_images):
|
|
||||||
|
|
||||||
source_image = cv2.cvtColor(np.array(source_image), cv2.COLOR_RGB2BGR)
|
|
||||||
source_img_ff.append(source_image)
|
|
||||||
|
|
||||||
if source_hash_check:
|
|
||||||
|
|
||||||
source_image_md5hash = get_image_md5hash(source_image)
|
|
||||||
|
|
||||||
if len(SOURCE_IMAGE_LIST_HASH) == 0:
|
|
||||||
SOURCE_IMAGE_LIST_HASH = [source_image_md5hash]
|
|
||||||
source_image_same = False
|
|
||||||
elif len(SOURCE_IMAGE_LIST_HASH) == i:
|
|
||||||
SOURCE_IMAGE_LIST_HASH.append(source_image_md5hash)
|
|
||||||
source_image_same = False
|
|
||||||
else:
|
|
||||||
source_image_same = True if SOURCE_IMAGE_LIST_HASH[i] == source_image_md5hash else False
|
|
||||||
if not source_image_same:
|
|
||||||
SOURCE_IMAGE_LIST_HASH[i] = source_image_md5hash
|
|
||||||
|
|
||||||
logger.info("(Image %s) Source Image MD5 Hash = %s", i, SOURCE_IMAGE_LIST_HASH[i])
|
|
||||||
logger.info("(Image %s) Source Image the Same? %s", i, source_image_same)
|
|
||||||
|
|
||||||
if len(SOURCE_FACES_LIST) == 0:
|
|
||||||
logger.status(f"Analyzing Source Image {i}: {source_images_names[i]}...")
|
|
||||||
source_faces = analyze_faces(source_image, det_thresh=detection_options.det_thresh, det_maxnum=detection_options.det_maxnum)
|
|
||||||
SOURCE_FACES_LIST = [source_faces]
|
|
||||||
elif len(SOURCE_FACES_LIST) == i and not source_image_same:
|
|
||||||
logger.status(f"Analyzing Source Image {i}: {source_images_names[i]}...")
|
|
||||||
source_faces = analyze_faces(source_image, det_thresh=detection_options.det_thresh, det_maxnum=detection_options.det_maxnum)
|
|
||||||
SOURCE_FACES_LIST.append(source_faces)
|
|
||||||
elif len(SOURCE_FACES_LIST) != i and not source_image_same:
|
|
||||||
logger.status(f"Analyzing Source Image {i}: {source_images_names[i]}...")
|
|
||||||
source_faces = analyze_faces(source_image, det_thresh=detection_options.det_thresh, det_maxnum=detection_options.det_maxnum)
|
|
||||||
SOURCE_FACES_LIST[i] = source_faces
|
|
||||||
elif source_image_same:
|
|
||||||
logger.status("(Image %s) Using Hashed Source Face(s) Model...", i)
|
|
||||||
source_faces = SOURCE_FACES_LIST[i]
|
|
||||||
|
|
||||||
else:
|
|
||||||
logger.status(f"Analyzing Source Image {i}...")
|
|
||||||
source_faces = analyze_faces(source_image, det_thresh=detection_options.det_thresh, det_maxnum=detection_options.det_maxnum)
|
|
||||||
|
|
||||||
if source_faces is not None:
|
|
||||||
source_faces_ff.append(source_faces)
|
|
||||||
|
|
||||||
if len(source_faces_ff) > 0:
|
|
||||||
|
|
||||||
if target_hash_check:
|
|
||||||
|
|
||||||
target_image_md5hash = get_image_md5hash(target_img)
|
|
||||||
|
|
||||||
if TARGET_IMAGE_HASH is None:
|
|
||||||
TARGET_IMAGE_HASH = target_image_md5hash
|
|
||||||
target_image_same = False
|
|
||||||
else:
|
|
||||||
target_image_same = True if TARGET_IMAGE_HASH == target_image_md5hash else False
|
|
||||||
if not target_image_same:
|
|
||||||
TARGET_IMAGE_HASH = target_image_md5hash
|
|
||||||
|
|
||||||
logger.info("Target Image MD5 Hash = %s", TARGET_IMAGE_HASH)
|
|
||||||
logger.info("Target Image the Same? %s", target_image_same)
|
|
||||||
|
|
||||||
if TARGET_FACES is None or not target_image_same:
|
|
||||||
logger.status("Analyzing Target Image...")
|
|
||||||
target_faces = analyze_faces(target_img, det_thresh=detection_options.det_thresh, det_maxnum=detection_options.det_maxnum)
|
|
||||||
TARGET_FACES = target_faces
|
|
||||||
elif target_image_same:
|
|
||||||
logger.status("Using Hashed Target Face(s) Model...")
|
|
||||||
target_faces = TARGET_FACES
|
|
||||||
|
|
||||||
else:
|
|
||||||
logger.status("Analyzing Target Image...")
|
|
||||||
target_faces = analyze_faces(target_img, det_thresh=detection_options.det_thresh, det_maxnum=detection_options.det_maxnum)
|
|
||||||
|
|
||||||
for i,source_faces in enumerate(source_faces_ff):
|
|
||||||
|
|
||||||
logger.status("(Image %s) Detecting Source Face, Index = %s", i, source_faces_index[0])
|
|
||||||
source_face, wrong_gender, source_age, source_gender = get_face_single(source_img_ff[i], source_faces, face_index=source_faces_index[0], gender_source=gender_source, det_thresh=detection_options.det_thresh, det_maxnum=detection_options.det_maxnum)
|
|
||||||
|
|
||||||
if source_age != "None" or source_gender != "None":
|
|
||||||
logger.status("(Image %s) Detected: -%s- y.o. %s", i, source_age, source_gender)
|
|
||||||
|
|
||||||
if len(source_faces_index) != 0 and len(source_faces_index) != 1 and len(source_faces_index) != len(faces_index):
|
|
||||||
logger.status("Source Faces must have no entries (default=0), one entry, or same number of entries as target faces.")
|
|
||||||
|
|
||||||
elif source_face is not None:
|
|
||||||
|
|
||||||
result_image, output, swapped = operate(source_img_ff[i],target_img,target_img_orig,model,source_faces_index,faces_index,source_faces,target_faces,gender_source,gender_target,source_face,wrong_gender,source_age,source_gender,output,swapped,mask_face,entire_mask_image,enhancement_options,detection_options)
|
|
||||||
|
|
||||||
result.append(result_image)
|
|
||||||
|
|
||||||
result = [result_image] if len(result) == 0 else result
|
|
||||||
|
|
||||||
return result, output, swapped
|
|
||||||
|
|
||||||
# END
|
|
||||||
# *****************
|
|
||||||
|
|
||||||
# ***********************
|
|
||||||
# SWAP from IMG or MODEL:
|
|
||||||
|
|
||||||
else:
|
|
||||||
|
|
||||||
if select_source == 0 and source_img is not None:
|
|
||||||
|
|
||||||
source_img = cv2.cvtColor(np.array(source_img), cv2.COLOR_RGB2BGR)
|
|
||||||
|
|
||||||
if source_hash_check:
|
|
||||||
|
|
||||||
source_image_md5hash = get_image_md5hash(source_img)
|
|
||||||
|
|
||||||
if SOURCE_IMAGE_HASH is None:
|
|
||||||
SOURCE_IMAGE_HASH = source_image_md5hash
|
|
||||||
source_image_same = False
|
|
||||||
else:
|
|
||||||
source_image_same = True if SOURCE_IMAGE_HASH == source_image_md5hash else False
|
|
||||||
if not source_image_same:
|
|
||||||
SOURCE_IMAGE_HASH = source_image_md5hash
|
|
||||||
|
|
||||||
logger.info("Source Image MD5 Hash = %s", SOURCE_IMAGE_HASH)
|
|
||||||
logger.info("Source Image the Same? %s", source_image_same)
|
|
||||||
|
|
||||||
if SOURCE_FACES is None or not source_image_same:
|
|
||||||
logger.status("Analyzing Source Image...")
|
|
||||||
source_faces = analyze_faces(source_img, det_thresh=detection_options.det_thresh, det_maxnum=detection_options.det_maxnum)
|
|
||||||
SOURCE_FACES = source_faces
|
|
||||||
elif source_image_same:
|
|
||||||
logger.status("Using Hashed Source Face(s) Model...")
|
|
||||||
source_faces = SOURCE_FACES
|
|
||||||
|
|
||||||
else:
|
|
||||||
logger.status("Analyzing Source Image...")
|
|
||||||
source_faces = analyze_faces(source_img, det_thresh=detection_options.det_thresh, det_maxnum=detection_options.det_maxnum)
|
|
||||||
|
|
||||||
elif select_source == 1 and (face_model is not None and face_model != "None"):
|
|
||||||
source_face_model = [load_face_model(face_model)]
|
|
||||||
if source_face_model is not None:
|
|
||||||
source_faces_index = [0]
|
|
||||||
source_faces = source_face_model
|
|
||||||
logger.status(f"Using Loaded Source Face Model: {face_model}")
|
|
||||||
else:
|
|
||||||
logger.error(f"Cannot load Face Model File: {face_model}")
|
|
||||||
|
|
||||||
else:
|
|
||||||
logger.error("Cannot detect any Source")
|
|
||||||
return result_image, [], 0
|
|
||||||
|
|
||||||
if source_faces is not None:
|
|
||||||
|
|
||||||
if target_hash_check:
|
|
||||||
|
|
||||||
target_image_md5hash = get_image_md5hash(target_img)
|
|
||||||
|
|
||||||
if TARGET_IMAGE_HASH is None:
|
|
||||||
TARGET_IMAGE_HASH = target_image_md5hash
|
|
||||||
target_image_same = False
|
|
||||||
else:
|
|
||||||
target_image_same = True if TARGET_IMAGE_HASH == target_image_md5hash else False
|
|
||||||
if not target_image_same:
|
|
||||||
TARGET_IMAGE_HASH = target_image_md5hash
|
|
||||||
|
|
||||||
logger.info("Target Image MD5 Hash = %s", TARGET_IMAGE_HASH)
|
|
||||||
logger.info("Target Image the Same? %s", target_image_same)
|
|
||||||
|
|
||||||
if TARGET_FACES is None or not target_image_same:
|
|
||||||
logger.status("Analyzing Target Image...")
|
|
||||||
target_faces = analyze_faces(target_img, det_thresh=detection_options.det_thresh, det_maxnum=detection_options.det_maxnum)
|
|
||||||
TARGET_FACES = target_faces
|
|
||||||
elif target_image_same:
|
|
||||||
logger.status("Using Hashed Target Face(s) Model...")
|
|
||||||
target_faces = TARGET_FACES
|
|
||||||
|
|
||||||
else:
|
|
||||||
logger.status("Analyzing Target Image...")
|
|
||||||
target_faces = analyze_faces(target_img, det_thresh=detection_options.det_thresh, det_maxnum=detection_options.det_maxnum)
|
|
||||||
|
|
||||||
logger.status("Detecting Source Face, Index = %s", source_faces_index[0])
|
|
||||||
if select_source == 0 and source_img is not None:
|
|
||||||
source_face, wrong_gender, source_age, source_gender = get_face_single(source_img, source_faces, face_index=source_faces_index[0], gender_source=gender_source, det_thresh=detection_options.det_thresh, det_maxnum=detection_options.det_maxnum)
|
|
||||||
else:
|
|
||||||
source_face = sorted(source_faces, key=lambda x: x.bbox[0])[source_faces_index[0]]
|
|
||||||
wrong_gender = 0
|
|
||||||
source_age = source_face["age"]
|
|
||||||
source_gender = "Female" if source_face["gender"] == 0 else "Male"
|
|
||||||
|
|
||||||
if source_age != "None" or source_gender != "None":
|
|
||||||
logger.status("Detected: -%s- y.o. %s", source_age, source_gender)
|
|
||||||
|
|
||||||
output_info = f"SourceFaceIndex={source_faces_index[0]};Age={source_age};Gender={source_gender}\n"
|
|
||||||
output.append(output_info)
|
|
||||||
|
|
||||||
if len(source_faces_index) != 0 and len(source_faces_index) != 1 and len(source_faces_index) != len(faces_index):
|
|
||||||
logger.status("Source Faces must have no entries (default=0), one entry, or same number of entries as target faces.")
|
|
||||||
|
|
||||||
elif source_face is not None:
|
|
||||||
|
|
||||||
result_image, output, swapped = operate(source_img,target_img,target_img_orig,model,source_faces_index,faces_index,source_faces,target_faces,gender_source,gender_target,source_face,wrong_gender,source_age,source_gender,output,swapped,mask_face,entire_mask_image,enhancement_options,detection_options)
|
|
||||||
|
|
||||||
else:
|
|
||||||
logger.status("No source face(s) in the provided Index")
|
|
||||||
else:
|
|
||||||
logger.status("No source face(s) found")
|
|
||||||
|
|
||||||
return result_image, output, swapped
|
|
||||||
|
|
||||||
# END
|
|
||||||
# **********************
|
|
||||||
|
|
||||||
return result_image, [], 0
|
|
||||||
|
|
||||||
def build_face_model(image: Image.Image, name: str, save_model: bool = True, det_size=(640, 640)):
|
|
||||||
if image is None:
|
|
||||||
error_msg = "Please load an Image"
|
|
||||||
logger.error(error_msg)
|
|
||||||
return error_msg
|
|
||||||
if name is None:
|
|
||||||
error_msg = "Please filled out the 'Face Model Name' field"
|
|
||||||
logger.error(error_msg)
|
|
||||||
return error_msg
|
|
||||||
apply_logging_patch(1)
|
|
||||||
image = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)
|
|
||||||
if save_model:
|
|
||||||
logger.status("Building Face Model...")
|
|
||||||
face_model = analyze_faces(image, det_size)
|
|
||||||
|
|
||||||
if len(face_model) == 0:
|
|
||||||
det_size_half = half_det_size(det_size)
|
|
||||||
face_model = analyze_faces(image, det_size_half)
|
|
||||||
|
|
||||||
if face_model is not None and len(face_model) > 0:
|
|
||||||
if save_model:
|
|
||||||
face_model_path = os.path.join(FACE_MODELS_PATH, name + ".safetensors")
|
|
||||||
save_face_model(face_model[0],face_model_path)
|
|
||||||
logger.status("--Done!--")
|
|
||||||
done_msg = f"Face model has been saved to '{face_model_path}'"
|
|
||||||
logger.status(done_msg)
|
|
||||||
return done_msg
|
|
||||||
else:
|
|
||||||
return face_model[0]
|
|
||||||
else:
|
|
||||||
no_face_msg = "No face found, please try another image"
|
|
||||||
logger.error(no_face_msg)
|
|
||||||
return no_face_msg
|
|
||||||
|
|
||||||
def blend_faces(images_list: List, name: str, compute_method: int = 0, shape_check: bool = False, is_api: bool = False):
|
|
||||||
faces = []
|
|
||||||
embeddings = []
|
|
||||||
images: List[Image.Image] = []
|
|
||||||
if not is_api:
|
|
||||||
images, images_names = get_images_from_list(images_list)
|
|
||||||
else:
|
|
||||||
images = images_list
|
|
||||||
for i,image in enumerate(images):
|
|
||||||
if not is_api:
|
|
||||||
logger.status(f"Building Face Model for {images_names[i]}...")
|
|
||||||
else:
|
|
||||||
logger.status(f"Building Face Model for Image {i+1}...")
|
|
||||||
face = build_face_model(image,str(i),save_model=False)
|
|
||||||
if isinstance(face, str):
|
|
||||||
# logger.error(f"No faces found in {images_names[i]}, skipping")
|
|
||||||
continue
|
|
||||||
if shape_check:
|
|
||||||
if i == 0:
|
|
||||||
embedding_shape = face.embedding.shape
|
|
||||||
elif face.embedding.shape != embedding_shape:
|
|
||||||
if not is_api:
|
|
||||||
logger.error(f"Embedding Shape Mismatch for {images_names[i]}, skipping")
|
|
||||||
else:
|
|
||||||
logger.error(f"Embedding Shape Mismatch for Image {i+1}, skipping")
|
|
||||||
continue
|
|
||||||
faces.append(face)
|
|
||||||
embeddings.append(face.embedding)
|
|
||||||
if len(faces) > 0:
|
|
||||||
# if shape_check:
|
|
||||||
# embedding_shape = embeddings[0].shape
|
|
||||||
# for embedding in embeddings:
|
|
||||||
# if embedding.shape != embedding_shape:
|
|
||||||
# logger.error("Embedding Shape Mismatch")
|
|
||||||
# break
|
|
||||||
compute_method_name = "Mean" if compute_method == 0 else "Median" if compute_method == 1 else "Mode"
|
|
||||||
logger.status(f"Blending with Compute Method {compute_method_name}...")
|
|
||||||
blended_embedding = np.mean(embeddings, axis=0) if compute_method == 0 else np.median(embeddings, axis=0) if compute_method == 1 else stats.mode(embeddings, axis=0)[0].astype(np.float32)
|
|
||||||
blended_face = Face(
|
|
||||||
bbox=faces[0].bbox,
|
|
||||||
kps=faces[0].kps,
|
|
||||||
det_score=faces[0].det_score,
|
|
||||||
landmark_3d_68=faces[0].landmark_3d_68,
|
|
||||||
pose=faces[0].pose,
|
|
||||||
landmark_2d_106=faces[0].landmark_2d_106,
|
|
||||||
embedding=blended_embedding,
|
|
||||||
gender=faces[0].gender,
|
|
||||||
age=faces[0].age
|
|
||||||
)
|
|
||||||
if blended_face is not None:
|
|
||||||
face_model_path = os.path.join(FACE_MODELS_PATH, name + ".safetensors")
|
|
||||||
save_face_model(blended_face,face_model_path)
|
|
||||||
logger.status("--Done!--")
|
|
||||||
done_msg = f"Face model has been saved to '{face_model_path}'"
|
|
||||||
logger.status(done_msg)
|
|
||||||
return done_msg
|
|
||||||
else:
|
|
||||||
no_face_msg = "Something went wrong, please try another set of images"
|
|
||||||
logger.error(no_face_msg)
|
|
||||||
return no_face_msg
|
|
||||||
return "No faces found"
|
|
||||||
|
|
||||||
|
|
||||||
def operate(
|
|
||||||
source_img,
|
|
||||||
target_img,
|
|
||||||
target_img_orig,
|
|
||||||
model,
|
|
||||||
source_faces_index,
|
|
||||||
faces_index,
|
|
||||||
source_faces,
|
|
||||||
target_faces,
|
|
||||||
gender_source,
|
|
||||||
gender_target,
|
|
||||||
source_face,
|
|
||||||
wrong_gender,
|
|
||||||
source_age,
|
|
||||||
source_gender,
|
|
||||||
output,
|
|
||||||
swapped,
|
|
||||||
mask_face,
|
|
||||||
entire_mask_image,
|
|
||||||
enhancement_options,
|
|
||||||
detection_options,
|
|
||||||
):
|
|
||||||
result = target_img
|
|
||||||
face_swapper = getFaceSwapModel(model)
|
|
||||||
|
|
||||||
source_face_idx = 0
|
|
||||||
|
|
||||||
for face_num in faces_index:
|
|
||||||
if check_process_halt():
|
|
||||||
return result_image, [], 0
|
|
||||||
if len(source_faces_index) > 1 and source_face_idx > 0:
|
|
||||||
logger.status("Detecting Source Face, Index = %s", source_faces_index[source_face_idx])
|
|
||||||
source_face, wrong_gender, source_age, source_gender = get_face_single(source_img, source_faces, face_index=source_faces_index[source_face_idx], gender_source=gender_source, det_thresh=detection_options.det_thresh, det_maxnum=detection_options.det_maxnum)
|
|
||||||
if source_age != "None" or source_gender != "None":
|
|
||||||
logger.status("Detected: -%s- y.o. %s", source_age, source_gender)
|
|
||||||
|
|
||||||
output_info = f"SourceFaceIndex={source_faces_index[source_face_idx]};Age={source_age};Gender={source_gender}\n"
|
|
||||||
output.append(output_info)
|
|
||||||
|
|
||||||
source_face_idx += 1
|
|
||||||
|
|
||||||
if source_face is not None and wrong_gender == 0:
|
|
||||||
logger.status("Detecting Target Face, Index = %s", face_num)
|
|
||||||
target_face, wrong_gender, target_age, target_gender = get_face_single(target_img, target_faces, face_index=face_num, gender_target=gender_target, det_thresh=detection_options.det_thresh, det_maxnum=detection_options.det_maxnum)
|
|
||||||
if target_age != "None" or target_gender != "None":
|
|
||||||
logger.status("Detected: -%s- y.o. %s", target_age, target_gender)
|
|
||||||
|
|
||||||
output_info = f"TargetFaceIndex={face_num};Age={target_age};Gender={target_gender}\n"
|
|
||||||
output.append(output_info)
|
|
||||||
|
|
||||||
if target_face is not None and wrong_gender == 0:
|
|
||||||
logger.status("Swapping Source into Target")
|
|
||||||
swapped_image = face_swapper.get(result, target_face, source_face)
|
|
||||||
|
|
||||||
if mask_face:
|
|
||||||
result = apply_face_mask(swapped_image=swapped_image,target_image=result,target_face=target_face,entire_mask_image=entire_mask_image)
|
|
||||||
else:
|
|
||||||
result = swapped_image
|
|
||||||
swapped += 1
|
|
||||||
|
|
||||||
elif wrong_gender == 1:
|
|
||||||
wrong_gender = 0
|
|
||||||
|
|
||||||
if source_face_idx == len(source_faces_index):
|
|
||||||
result_image = Image.fromarray(cv2.cvtColor(result, cv2.COLOR_BGR2RGB))
|
|
||||||
|
|
||||||
if enhancement_options is not None and len(source_faces_index) > 1:
|
|
||||||
result_image = enhance_image(result_image, enhancement_options)
|
|
||||||
|
|
||||||
return result_image, output, swapped
|
|
||||||
|
|
||||||
else:
|
|
||||||
logger.status(f"No target face found for {face_num}")
|
|
||||||
|
|
||||||
elif wrong_gender == 1:
|
|
||||||
wrong_gender = 0
|
|
||||||
|
|
||||||
if source_face_idx == len(source_faces_index):
|
|
||||||
result_image = Image.fromarray(cv2.cvtColor(result, cv2.COLOR_BGR2RGB))
|
|
||||||
|
|
||||||
if enhancement_options is not None and len(source_faces_index) > 1:
|
|
||||||
result_image = enhance_image(result_image, enhancement_options)
|
|
||||||
|
|
||||||
return result_image, output, swapped
|
|
||||||
|
|
||||||
else:
|
|
||||||
logger.status(f"No source face found for face number {source_face_idx}.")
|
|
||||||
|
|
||||||
result_image = Image.fromarray(cv2.cvtColor(result, cv2.COLOR_BGR2RGB))
|
|
||||||
|
|
||||||
if (enhancement_options is not None and swapped > 0) or enhancement_options.upscale_force:
|
|
||||||
if mask_face and entire_mask_image is not None:
|
|
||||||
result_image = enhance_image_and_mask(result_image, enhancement_options,Image.fromarray(target_img_orig),Image.fromarray(entire_mask_image).convert("L"))
|
|
||||||
else:
|
|
||||||
result_image = enhance_image(result_image, enhancement_options)
|
|
||||||
elif mask_face and entire_mask_image is not None and swapped > 0:
|
|
||||||
result_image = Image.composite(result_image,Image.fromarray(target_img_orig),Image.fromarray(entire_mask_image).convert("L"))
|
|
||||||
|
|
||||||
return result_image, output, swapped
|
|
||||||
@ -1,11 +0,0 @@
|
|||||||
app_title = "ReActor"
|
|
||||||
version_flag = "v0.7.1-b2"
|
|
||||||
|
|
||||||
from scripts.reactor_logger import logger, get_Run, set_Run
|
|
||||||
from scripts.reactor_globals import DEVICE
|
|
||||||
|
|
||||||
is_run = get_Run()
|
|
||||||
|
|
||||||
if not is_run:
|
|
||||||
logger.status(f"Running {version_flag} on Device: {DEVICE}")
|
|
||||||
set_Run(True)
|
|
||||||
@ -1,94 +0,0 @@
|
|||||||
'''
|
|
||||||
Thanks @ledahu for contributing
|
|
||||||
'''
|
|
||||||
|
|
||||||
from modules import scripts
|
|
||||||
from modules.shared import opts
|
|
||||||
|
|
||||||
from scripts.reactor_helpers import (
|
|
||||||
get_model_names,
|
|
||||||
get_facemodels
|
|
||||||
)
|
|
||||||
|
|
||||||
|
|
||||||
# xyz_grid = [x for x in scripts.scripts_data if x.script_class.__module__ == "xyz_grid.py"][0].module
|
|
||||||
|
|
||||||
def find_module(module_names):
|
|
||||||
if isinstance(module_names, str):
|
|
||||||
module_names = [s.strip() for s in module_names.split(",")]
|
|
||||||
for data in scripts.scripts_data:
|
|
||||||
if data.script_class.__module__ in module_names and hasattr(data, "module"):
|
|
||||||
return data.module
|
|
||||||
return None
|
|
||||||
|
|
||||||
def bool_(string):
|
|
||||||
string = str(string)
|
|
||||||
if string in ["None", ""]:
|
|
||||||
return None
|
|
||||||
elif string.lower() in ["true", "1"]:
|
|
||||||
return True
|
|
||||||
elif string.lower() in ["false", "0"]:
|
|
||||||
return False
|
|
||||||
else:
|
|
||||||
raise ValueError(f"Could not convert string to boolean: {string}")
|
|
||||||
|
|
||||||
def choices_bool():
|
|
||||||
return ["False", "True"]
|
|
||||||
|
|
||||||
def choices_face_models():
|
|
||||||
return get_model_names(get_facemodels)
|
|
||||||
|
|
||||||
def float_applier(value_name:str, min_range:float = 0, max_range:float = 1):
|
|
||||||
"""
|
|
||||||
Returns a function that applies the given value to the given value_name in opts.data.
|
|
||||||
"""
|
|
||||||
def validate(value_name:str, value:str):
|
|
||||||
value = float(value)
|
|
||||||
# validate value
|
|
||||||
if not min_range == 0:
|
|
||||||
assert value >= min_range, f"Value {value} for {value_name} must be greater than or equal to {min_range}"
|
|
||||||
if not max_range == 1:
|
|
||||||
assert value <= max_range, f"Value {value} for {value_name} must be less than or equal to {max_range}"
|
|
||||||
def apply_float(p, x, xs):
|
|
||||||
validate(value_name, x)
|
|
||||||
opts.data[value_name] = float(x)
|
|
||||||
return apply_float
|
|
||||||
|
|
||||||
def bool_applier(value_name:str):
|
|
||||||
def apply_bool(p, x, xs):
|
|
||||||
x_normed = bool_(x)
|
|
||||||
opts.data[value_name] = x_normed
|
|
||||||
# print(f'normed = {x_normed}')
|
|
||||||
return apply_bool
|
|
||||||
|
|
||||||
def str_applier(value_name:str):
|
|
||||||
def apply_str(p, x, xs):
|
|
||||||
opts.data[value_name] = x
|
|
||||||
return apply_str
|
|
||||||
|
|
||||||
|
|
||||||
def add_axis_options(xyz_grid):
|
|
||||||
extra_axis_options = [
|
|
||||||
xyz_grid.AxisOption("[ReActor] CodeFormer Weight", float, float_applier("codeformer_weight", 0, 1)),
|
|
||||||
xyz_grid.AxisOption("[ReActor] Restorer Visibility", float, float_applier("restorer_visibility", 0, 1)),
|
|
||||||
xyz_grid.AxisOption("[ReActor] Face Mask Correction", str, bool_applier("mask_face"), choices=choices_bool),
|
|
||||||
xyz_grid.AxisOption("[ReActor] Face Models", str, str_applier("face_model"), choices=choices_face_models),
|
|
||||||
]
|
|
||||||
set_a = {opt.label for opt in xyz_grid.axis_options}
|
|
||||||
set_b = {opt.label for opt in extra_axis_options}
|
|
||||||
if set_a.intersection(set_b):
|
|
||||||
return
|
|
||||||
|
|
||||||
xyz_grid.axis_options.extend(extra_axis_options)
|
|
||||||
|
|
||||||
def run():
|
|
||||||
xyz_grid = find_module("xyz_grid.py, xy_grid.py")
|
|
||||||
if xyz_grid:
|
|
||||||
add_axis_options(xyz_grid)
|
|
||||||
|
|
||||||
# XYZ init:
|
|
||||||
try:
|
|
||||||
import modules.script_callbacks as script_callbacks
|
|
||||||
script_callbacks.on_before_ui(run)
|
|
||||||
except:
|
|
||||||
pass
|
|
||||||
203
scripts/swapper.py
Normal file
203
scripts/swapper.py
Normal file
@ -0,0 +1,203 @@
|
|||||||
|
import copy
|
||||||
|
import os
|
||||||
|
from dataclasses import dataclass
|
||||||
|
from typing import List, Union
|
||||||
|
|
||||||
|
import cv2
|
||||||
|
import numpy as np
|
||||||
|
from PIL import Image
|
||||||
|
|
||||||
|
import insightface
|
||||||
|
import onnxruntime
|
||||||
|
|
||||||
|
from modules.face_restoration import FaceRestoration
|
||||||
|
from modules.upscaler import UpscalerData
|
||||||
|
from scripts.logger import logger
|
||||||
|
|
||||||
|
import warnings
|
||||||
|
|
||||||
|
np.warnings = warnings
|
||||||
|
np.warnings.filterwarnings('ignore')
|
||||||
|
|
||||||
|
providers = onnxruntime.get_available_providers()
|
||||||
|
|
||||||
|
|
||||||
|
@dataclass
|
||||||
|
class UpscaleOptions:
|
||||||
|
do_restore_first: bool = True
|
||||||
|
scale: int = 1
|
||||||
|
upscaler: UpscalerData = None
|
||||||
|
upscale_visibility: float = 0.5
|
||||||
|
face_restorer: FaceRestoration = None
|
||||||
|
restorer_visibility: float = 0.5
|
||||||
|
|
||||||
|
|
||||||
|
def cosine_distance(vector1: np.ndarray, vector2: np.ndarray) -> float:
|
||||||
|
vec1 = vector1.flatten()
|
||||||
|
vec2 = vector2.flatten()
|
||||||
|
|
||||||
|
dot_product = np.dot(vec1, vec2)
|
||||||
|
norm1 = np.linalg.norm(vec1)
|
||||||
|
norm2 = np.linalg.norm(vec2)
|
||||||
|
|
||||||
|
cosine_distance = 1 - (dot_product / (norm1 * norm2))
|
||||||
|
return cosine_distance
|
||||||
|
|
||||||
|
|
||||||
|
def cosine_similarity(test_vec: np.ndarray, source_vecs: List[np.ndarray]) -> float:
|
||||||
|
cos_dist = sum(cosine_distance(test_vec, source_vec) for source_vec in source_vecs)
|
||||||
|
average_cos_dist = cos_dist / len(source_vecs)
|
||||||
|
return average_cos_dist
|
||||||
|
|
||||||
|
|
||||||
|
FS_MODEL = None
|
||||||
|
CURRENT_FS_MODEL_PATH = None
|
||||||
|
|
||||||
|
ANALYSIS_MODEL = None
|
||||||
|
|
||||||
|
|
||||||
|
def getAnalysisModel():
|
||||||
|
global ANALYSIS_MODEL
|
||||||
|
if ANALYSIS_MODEL is None:
|
||||||
|
ANALYSIS_MODEL = insightface.app.FaceAnalysis(
|
||||||
|
name="buffalo_l", providers=providers
|
||||||
|
)
|
||||||
|
return ANALYSIS_MODEL
|
||||||
|
|
||||||
|
|
||||||
|
def getFaceSwapModel(model_path: str):
|
||||||
|
global FS_MODEL
|
||||||
|
global CURRENT_FS_MODEL_PATH
|
||||||
|
if CURRENT_FS_MODEL_PATH is None or CURRENT_FS_MODEL_PATH != model_path:
|
||||||
|
CURRENT_FS_MODEL_PATH = model_path
|
||||||
|
FS_MODEL = insightface.model_zoo.get_model(model_path, providers=providers)
|
||||||
|
|
||||||
|
return FS_MODEL
|
||||||
|
|
||||||
|
|
||||||
|
def upscale_image(image: Image, upscale_options: UpscaleOptions):
|
||||||
|
result_image = image
|
||||||
|
if upscale_options.do_restore_first:
|
||||||
|
if upscale_options.face_restorer is not None:
|
||||||
|
original_image = result_image.copy()
|
||||||
|
logger.info("Restoring the face with %s", upscale_options.face_restorer.name())
|
||||||
|
numpy_image = np.array(result_image)
|
||||||
|
numpy_image = upscale_options.face_restorer.restore(numpy_image)
|
||||||
|
restored_image = Image.fromarray(numpy_image)
|
||||||
|
result_image = Image.blend(
|
||||||
|
original_image, restored_image, upscale_options.restorer_visibility
|
||||||
|
)
|
||||||
|
if upscale_options.upscaler is not None and upscale_options.upscaler.name != "None":
|
||||||
|
original_image = result_image.copy()
|
||||||
|
logger.info(
|
||||||
|
"Upscaling with %s scale = %s",
|
||||||
|
upscale_options.upscaler.name,
|
||||||
|
upscale_options.scale,
|
||||||
|
)
|
||||||
|
result_image = upscale_options.upscaler.scaler.upscale(
|
||||||
|
original_image, upscale_options.scale, upscale_options.upscaler.data_path
|
||||||
|
)
|
||||||
|
if upscale_options.scale == 1:
|
||||||
|
result_image = Image.blend(
|
||||||
|
original_image, result_image, upscale_options.upscale_visibility
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
if upscale_options.upscaler is not None and upscale_options.upscaler.name != "None":
|
||||||
|
original_image = result_image.copy()
|
||||||
|
logger.info(
|
||||||
|
"Upscaling with %s scale = %s",
|
||||||
|
upscale_options.upscaler.name,
|
||||||
|
upscale_options.scale,
|
||||||
|
)
|
||||||
|
result_image = upscale_options.upscaler.scaler.upscale(
|
||||||
|
image, upscale_options.scale, upscale_options.upscaler.data_path
|
||||||
|
)
|
||||||
|
if upscale_options.scale == 1:
|
||||||
|
result_image = Image.blend(
|
||||||
|
original_image, result_image, upscale_options.upscale_visibility
|
||||||
|
)
|
||||||
|
if upscale_options.face_restorer is not None:
|
||||||
|
original_image = result_image.copy()
|
||||||
|
logger.info("Restoring the face with %s", upscale_options.face_restorer.name())
|
||||||
|
numpy_image = np.array(result_image)
|
||||||
|
numpy_image = upscale_options.face_restorer.restore(numpy_image)
|
||||||
|
restored_image = Image.fromarray(numpy_image)
|
||||||
|
result_image = Image.blend(
|
||||||
|
original_image, restored_image, upscale_options.restorer_visibility
|
||||||
|
)
|
||||||
|
|
||||||
|
return result_image
|
||||||
|
|
||||||
|
|
||||||
|
def get_face_single(img_data: np.ndarray, face_index=0, det_size=(640, 640)):
|
||||||
|
face_analyser = copy.deepcopy(getAnalysisModel())
|
||||||
|
face_analyser.prepare(ctx_id=0, det_size=det_size)
|
||||||
|
face = face_analyser.get(img_data)
|
||||||
|
|
||||||
|
if len(face) == 0 and det_size[0] > 320 and det_size[1] > 320:
|
||||||
|
det_size_half = (det_size[0] // 2, det_size[1] // 2)
|
||||||
|
return get_face_single(img_data, face_index=face_index, det_size=det_size_half)
|
||||||
|
|
||||||
|
try:
|
||||||
|
return sorted(face, key=lambda x: x.bbox[0])[face_index]
|
||||||
|
except IndexError:
|
||||||
|
return None
|
||||||
|
|
||||||
|
|
||||||
|
def swap_face(
|
||||||
|
source_img: Image.Image,
|
||||||
|
target_img: Image.Image,
|
||||||
|
model: Union[str, None] = None,
|
||||||
|
source_faces_index: List[int] = [0],
|
||||||
|
faces_index: List[int] = [0],
|
||||||
|
upscale_options: Union[UpscaleOptions, None] = None,
|
||||||
|
):
|
||||||
|
result_image = target_img
|
||||||
|
if model is not None:
|
||||||
|
|
||||||
|
if isinstance(source_img, str): # source_img is a base64 string
|
||||||
|
import base64, io
|
||||||
|
if 'base64,' in source_img: # check if the base64 string has a data URL scheme
|
||||||
|
# split the base64 string to get the actual base64 encoded image data
|
||||||
|
base64_data = source_img.split('base64,')[-1]
|
||||||
|
# decode base64 string to bytes
|
||||||
|
img_bytes = base64.b64decode(base64_data)
|
||||||
|
else:
|
||||||
|
# if no data URL scheme, just decode
|
||||||
|
img_bytes = base64.b64decode(source_img)
|
||||||
|
|
||||||
|
source_img = Image.open(io.BytesIO(img_bytes))
|
||||||
|
|
||||||
|
source_img = cv2.cvtColor(np.array(source_img), cv2.COLOR_RGB2BGR)
|
||||||
|
target_img = cv2.cvtColor(np.array(target_img), cv2.COLOR_RGB2BGR)
|
||||||
|
source_face = get_face_single(source_img, face_index=source_faces_index[0])
|
||||||
|
if len(source_faces_index) != 0 and len(source_faces_index) != 1 and len(source_faces_index) != len(faces_index):
|
||||||
|
logger.info(f'Source Faces must have no entries (default=0), one entry, or same number of entries as target faces.')
|
||||||
|
elif source_face is not None:
|
||||||
|
result = target_img
|
||||||
|
model_path = os.path.join(os.path.abspath(os.path.dirname(__file__)), model)
|
||||||
|
face_swapper = getFaceSwapModel(model_path)
|
||||||
|
|
||||||
|
source_face_idx = 0
|
||||||
|
|
||||||
|
for face_num in faces_index:
|
||||||
|
if len(source_faces_index) > 1 and source_face_idx > 0:
|
||||||
|
source_face = get_face_single(source_img, face_index=source_faces_index[source_face_idx])
|
||||||
|
source_face_idx += 1
|
||||||
|
|
||||||
|
if source_face is not None:
|
||||||
|
target_face = get_face_single(target_img, face_index=face_num)
|
||||||
|
if target_face is not None:
|
||||||
|
result = face_swapper.get(result, target_face, source_face)
|
||||||
|
else:
|
||||||
|
logger.info(f"No target face found for {face_num}")
|
||||||
|
else:
|
||||||
|
logger.info(f"No source face found for face number {source_face_idx}.")
|
||||||
|
|
||||||
|
result_image = Image.fromarray(cv2.cvtColor(result, cv2.COLOR_BGR2RGB))
|
||||||
|
if upscale_options is not None and target_face is not None:
|
||||||
|
result_image = upscale_image(result_image, upscale_options)
|
||||||
|
|
||||||
|
else:
|
||||||
|
logger.info("No source face(s) found")
|
||||||
|
return result_image
|
||||||
10
scripts/version.py
Normal file
10
scripts/version.py
Normal file
@ -0,0 +1,10 @@
|
|||||||
|
app_title = "ReActor"
|
||||||
|
version_flag = "v0.3.0"
|
||||||
|
|
||||||
|
from scripts.logger import logger, get_Run, set_Run
|
||||||
|
|
||||||
|
is_run = get_Run()
|
||||||
|
|
||||||
|
if not is_run:
|
||||||
|
logger.info(f"Running {version_flag}")
|
||||||
|
set_Run(True)
|
||||||
Loading…
x
Reference in New Issue
Block a user